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The symplectic derivation Lie algebra hg,1

Σg,1: a compact oriented connected surface of genus g
w/ one boundary component

H := H1(Σg,1; Q) ∼= Q2g

Intersection form on H:

µ : H ⊗ H −→ Q
(

non-degenerate
skew-symmetric

)

Sp(H) ∼= Sp(2g, Q): symplectic group,

Sp(H) ! H µ-preserving action.
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Let

hg,1 =
∞⊕

k=0

hg,1(k)

be the graded Lie algebra of the symplectic derivations of the

free Lie algebra L(H) =
∞⊕

i=1

Li(H) generated by H.

hg,1(0) ∼= sp(2g, Q) ∼= S2H

For k ≥ 1, we have

hg,1(k) = Ker
(
L1(H) ⊗ Lk+1(H)

[ · , · ]−−−→ Lk+2(H)
)

.

h+
g,1 :=

∞⊕

k=1

hg,1(k): the Lie ideal of the positive degree part.
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Determine the homology group

H∗(h+
g,1) = H∗(∧∗(h+

g,1), ∂).

The grading of h+
g,1 induces

Hn(h+
g,1) =

∞⊕

w=0

Hn(h+
g,1)w,

where Hn(h+
g,1)w is the weight w-part.

.

Theorem. [Kontsevich, 1993]

.

.

.

. ..

.

.

PHk(h+
∞,1)

Sp
2n

∼= H2n−k(Out Fn+1; Q) n ≥ 1, k ≥ 1

Here h+
∞,1 := lim

g→∞
h+

g,1.
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We computed the integral Euler characteristics

e(OutFn) =
2n−3∑

i=0

(−1)i dim
(
H i(OutFn; Q)

)

of Out Fn up to n ≤ 11. Recall that vcd(Out Fn) = 2n − 3.

.

Theorem. [MSS, 2015]

.

.

.

. ..

.

.

n 2 3 4 5 6 7 8 9 10 11
e(OutFn) 1 1 2 1 2 1 1 −21 −124 −1202

It had been shown that

H4(OutF4; Q) ∼= Q⟨µ∗
1⟩ (Hatcher-Vogtmann, M. 1998),

H8(OutF6; Q) ∼= Q⟨µ∗
2⟩ (Ohashi, 2008),

H12(OutF8; Q) ⊃ Q⟨µ∗
3⟩ (Gray, 2011).

Our computation shows the existence of many non-trivial
odd-dimensional classes in H∗(OutFn; Q) for 8 ≤ n ≤ 11.
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Problem.
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Determine H1(h+
g,1)

Sp and H1(h+
∞,1)

Sp

The weight w part of H1(h+
g,1) is

H1(h+
g,1)w := hg,1(w)

/w−1∑

i=1

[hg,1(i), hg,1(w − i)].

Kontsevich’s theorem says that

H1
(
h+
∞,1

)Sp
2n

∼= H2n−1(Out Fn+1; Q)

for n ≥ 1. Here vcd(Out Fn+1) = 2n − 1.

H1
(
h+

g,1

)Sp
2k−1

= 0 for k ≥ 1

H1
(
h+

g,1

)Sp
2k

stabilizes for g ≫ k.
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Recently, Bartholdi (2015) showed

Hp(Out F7; Q) ∼=

{
Q (p = 0, 8, 11)
0 (otherwise)

with the aid of computers.
(Need to compute the rank of a 2038511 × 536647 matrix)

H11(Out F7; Q) ∼= Q is remarkable because it is the first
non-trivial odd and (virtually) top rational cohomology group
which is explicitly described.
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Main result

By theorems of Kontsevich and Bartholdi, we have

H1
(
h+
∞,1

)Sp
12

∼= H11(Out F7; Q) ∼= Q.

We proved H1
(
h+
∞,1

)Sp
12

= H1
(

lim
g→∞

h+
g,1

)Sp
12

∼= Q

directly in h+
g,1.

It gives an alternative proof of H11(OutF7; Q) ∼= Q.

Our proof also uses computers.

More precisely,
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Theorem 1. [MSS, 2016]

.

.

.

. ..

.

.

There exists an Sp(2g, Q)-invariant linear map

C : hg,1(12) −→ Q

satisfying that

C is non-trivial for any g ≥ 2,

the restriction of C to
11∑

i=1

[hg,1(i), hg,1(12 − i)] is trivial.

That is, the cocycle C gives a surjection

C̃ : H1(h+
g,1)

Sp
12 −−! Q

for every g ≥ 2. Moreover C̃ is an isomorphism for g ≥ 8.

Since H1(h+
1,1)

Sp
12 = 0, our bound of genus for the

non-triviality of H1(h+
g,1)

Sp
12 is best possible.
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Method for computation of H1
(
h+

g,1)
Sp
12

.

.
.

1 Find a coordinate system of hg,1(12)Sp ∼= Q650.

Actually, we did it in hg,1(12)Sp ⊂
(
H⊗14

)Sp ∼= Q135135.

.

.
.

2 Compute the bracket map

[ · , · ] :

(
6⊕

i=1

(
hg,1(i) ⊗ hg,1(12 − i)

)
)Sp

−→ hg,1(12)Sp.

We see that the image includes a subspace W ∼= Q649.

.

.

.

3 Find a linear map C : hg,1(12)Sp ! Q which annihilates W .

.

.

.

4 Check that C is trivial on the image of the bracket map.

We obtained C as a linear comb. of 647 multiple contractions.
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Relationship with the Enomoto-Satoh map

.

Theorem 2. [MSS, 2016]

.

.

.

. ..

.

.

For g ≥ 6, the Sp(2g, Q)-invariant cocycle C : hg,1(12) → Q factors
through the Enomoto-Satoh map

ES12 : hg,1(12) ↪→ H ⊗ L13(H) ↪→ H⊗14

µ⊗(id⊗12)−−−−−−→ H⊗12 −→
(
H⊗12

)
Z/12Z.

This theorem provides another description of the map C in
the form

C = C ′ ◦ ES12

with C ′ described by chord diagrams with 6 chords, which

serve as coordinate functions of
(
H⊗12

)Sp
Z/12Z

∼= Q897.

We obtained C ′ as a linear comb. of 278 multiple contractions.
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