

Reductivity problem on knot projections

by Ayaka Shimizu (NIT, Gunma College)

Topology & Computer 2016 in Akita
October 30, 2016

§ O. Outline

P: a Knot projection

r(P): the reductivity of P

How reduced P is

Example

$$r(\otimes)=0$$
 $r(\otimes)=1$ $r(\otimes)=2$ $r(\otimes)=3$

Theorem (S.)
$$r(P) \leq 4 (^{\forall}P)$$

Reductivity problem

$$3$$
P s.t. $r(P)=4$

3? P s.t. r(P)=4 P should ...?

Contents

- §1. Knot projections
- §2. Reductivity
- §3. 2-gons & 3-gons
- §4. Unavoidable sets
- §5. 4-gons •••• joint work with Vui Omoda

arXiv:1603.07811

§6. Future studies

§ 1. Knot projections

knot projection

We assume knot projections have at least one crossing.

Reducible and reduced

How reduced are we??

§ 2. Reductivity

HOW CENTER?

Inverse-half-twisted splice (HS 1)

Remark

We can obtain a reducible knot projection from any knot projection by a finite number of HS^{-1}

Reductivity -how reduced??

Definition

P: a knot projection

The reductivity r(P) of P is the minimal number of HS⁻¹ which are needed to obtain a reducible Knot projection from P.

Example

$$r(\otimes)=0 r(\otimes)=1$$

$$r(\bigotimes)=2 r(\bigotimes)=3$$

Remark

There exist infinitely many knot projections P with r(P)=0, 1, 2, and 3.

Reductivity is four or less

Theorem 1 (S)
$$r(P) \le 4 (^{\forall}P)$$

Reductivity problem

$$3P s.t. r(P) = 4$$

Reference: A. Shimizu, The reductivity of spherical curves, Topology and its Applications 196 (2015).

§ 3. 2-gons & 3-gons

Home types of cedestivity

2-gons (bigons) & 3-gons (trigons)

There are two types of 2-gons:

There are four types of 3-gons:

2-gons & 3-gons

2-gons

incoherent bigon

Proposition 2

If P has an incoherent 2° gon, then $r(P) \le 1$.

If P has a coherent 2-gon, then $r(P) \le 2$.

3-gons

Proposition 3

If P has a 3-gon of type A, then $r(P) \le 2$. If P has a 3-gon of type B, then $r(P) \le 3$. If P has a 3-gon of type C, then $r(P) \le 3$. If P has a 3-gon of type D, then $r(P) \le 4$.

§ 4. Unavoidable sets

fuery ceduced find projection must have one of the parts of, x, x, x, x, x

AST's theorem

Theorem (Adams-Shinjo-Tanaka)

Every reduced knot projection has 2-gon or 3-gon.

Reference: C. C. Adams, R. Shinjo and K. Tanaka, Complementary regions of knot and link diagrams, Ann. Comb. 15 (2011), 549-563.

Proof of AST's theorem

P: a reduced knot projection Cn: the number of n-gons of P

Euler's characteristic

$$\rightarrow$$
 2C₂+C₃=8+C₅+2C₆+3C₇+...

Proof of Theorem 1 (reductivity is four or less)

If P is reducible, then r(P)=0.

(by definition)

If P is reduced, P has a 2-gon or 3-gon, (by AST's theorem)

If P has a 2-gon, then $r(P) \le 2$. (by Proposition 2)

If P has a 3-gon, then $r(P) \le 4$. (by Proposition 3)

Unavoidable sets

By
$$2C_2 + C_3 = 8 + C_5 + 2C_6 + 3C_7 + \cdots$$

and the "discharding method",
we have:

Proposition 4

are unavoidable sets for a reduced Knot projection.

(four color theorem)

§ 5. 4-90ns

4-gons

There are 13 types of 4-gons:

Proposition 5 (Onoda-S)

If a knot projection P has one of

Unavoidable set for P with r(P)=4

Theorem 6 (Onoda-S)

is an unavoidable set for a knot projection with reductivity four.

Reference: Y. Onoda and A. Shimizu, The reductivity of spherical curves Part II: 4-gons, preprint (arXiv:1603.07811).

§ 6. Future studies

Future studies

Create a Knot projection P such that r(P)=4 (?) using parts of unavoidable sets.

(We need more unavoidable sets..)

Classify 5-gons and get another unavoidable set for P s.t. r(P)=4 using chord diagrams and computer.

