Computation of string operations using rational homotopy theory

若月駿

東大数理 D1 (日本学術振興会特別研究員 DC1)

2016年10月30日(日)

- Introduction
- Review on rational homotopy theory
- 3 Demonstration

- Introduction
- 2 Review on rational homotopy theory
- 3 Demonstration

Notation

Remark

In this talk,

- coefficients in $\mathbb Q$
- spaces are 1-connected
- "commutative" means "graded commutative"

What is string topology?

Chas-Sullivan '99, Cohen-Godin '05

```
M: an oriented connected closed m-manifold LM = \operatorname{Map}(S^1, M): the free loop space on M  \left\{ \begin{array}{ll} \mu \colon & H_*(LM)^{\otimes 2} \ \to & H_{*-m}(LM) \end{array} \right. (the loop product) \delta \colon & H_*(LM) \ \to & (H_*(LM)^{\otimes 2})_{*-m} \end{array} (the loop coproduct)
```

String topology: Study these operations

Construction of string operations

μ is constructed by mixing

- intersection product on the homology of a manifold $H_*(M)^{\otimes 2} \to H_{*-m}(M)$
- Pontrjagin product defined by the composition of based loops $H_*(\Omega M)^{\otimes 2} \to H_*(\Omega M)$ ($\Omega M = \operatorname{Map}_*(S^1, M)$: the based loop space on M)

intersection produc

The intersection product is defined as

$$\Delta^! \colon H_*(M)^{\otimes 2} \xrightarrow{\cong} H^{m-*}(M)^{\otimes 2} \xrightarrow{\Delta^*} H^{2m-*}(M) \xrightarrow{\cong} H_{*-m}(M)$$

using Poincaré duality of M

Construction of string operations

μ is constructed by mixing

- intersection product on the homology of a manifold $H_*(M)^{\otimes 2} \to H_{*-m}(M)$
- Pontrjagin product defined by the composition of based loops $H_*(\Omega M)^{\otimes 2} \to H_*(\Omega M)$ $(\Omega M = \operatorname{Map}_*(S^1, M)$: the based loop space on M)

intersection product

The intersection product is defined as

$$\Delta^! \colon H_*(M)^{\otimes 2} \xrightarrow{\cong} H^{m-*}(M)^{\otimes 2} \xrightarrow{\Delta^*} H^{2m-*}(M) \xrightarrow{\cong} H_{*-m}(M)$$

using Poincaré duality of M

Generalization of string operations

Félix-Thomas '09

Generalized μ, δ for Gorenstein spaces

Gorenstein space

Gorenstein space: a generalization of a space satisfying Poincaré duality

Examples:

- oriented connected closed manifolds
- classifying spaces of connected Lie groups

Triviality of string operations

Theorem

- 1 (Tamanoi '10)
 - M: a connected oriented closed manifold $\Rightarrow \delta$ is almost trivial ($\delta = 0$ if $\chi(M) = 0$)
- **2** (Félix-Thomas '09) M = BG: the classifying space of a connected Lie group $\Rightarrow \mu = 0$
- $\begin{array}{l} \textbf{(Naito '13)} \\ \dim(\pi_{\mathrm{even}}(M) \otimes \mathbb{Q}) < \dim(\pi_{\mathrm{odd}}(M) \otimes \mathbb{Q}) < \infty \text{ and} \\ \min\! \text{minimal Sullivan model of } M \text{ is pure} \\ \Rightarrow \delta = 0 \end{array}$
- 1 and 2 are "dual" to each other

Main result

- Explicit descliption of μ, δ using rational homotopy theory when $\dim(\pi_*(M) \otimes \mathbb{Q}) < \infty$
- (partial) generalization of ① ② ③ in the above theorem using the explicit description

"Theorem" (W_{\cdot})

M: Gorenstein space with $\dim(\pi_*(M) \otimes \mathbb{Q}) < \infty$

- ① $F \to M \to K(\mathbb{Z}, 2n+1)$: fibration (+ some condition) $\Rightarrow \delta = 0$ for M
- 2 $K(\mathbb{Z},2n) \to M \to B$: fibration (+ some condition) $\Rightarrow \mu = 0$ for M
- 3 $\dim(\pi_{\text{odd}}(M) \otimes \mathbb{Q}) > \dim(\pi_{\text{even}}(M) \otimes \mathbb{Q}) \Rightarrow \delta = 0$ for M

Main result

- Explicit descliption of μ, δ using rational homotopy theory when $\dim(\pi_*(M) \otimes \mathbb{Q}) < \infty$
- (partial) generalization of ① ② ③ in the above theorem using the explicit description

"Theorem" (W.)

M: Gorenstein space with $\dim(\pi_*(M)\otimes\mathbb{Q})<\infty$

- 2 $K(\mathbb{Z},2n) \to M \to B$: fibration (+ some condition) $\Rightarrow \mu = 0$ for M
- 3 $\dim(\pi_{\mathrm{odd}}(M)\otimes\mathbb{Q}) > \dim(\pi_{\mathrm{even}}(M)\otimes\mathbb{Q}) \Rightarrow \delta = 0$ for M

Method

based on rational homotopy theory

- Explicit description:
 Compute very easy examples and generalize them
- Triviality:
 Compute many examples by the explicit description using a computer

- Introduction
- 2 Review on rational homotopy theory
- 3 Demonstration

DGA

Definition

A Differential Graded Algebra(DGA) is a pair (A,d) of a graded algebra $A=\{A^n\}_{n\geq 0}$ and a linear map $d\colon A\to A$ satisfying $d^2=0$ and the Leibniz rule $d(ab)=da\cdot b+(-1)^{|a|}a\cdot db$

Example

the singular cochain algebra $C^*(X)=C^*(X;\mathbb{Q})$ is a DGA $C^*(X)$ is non-commutative, but $H^*(X)=H^*(C^*(X))$ is commutative

quasi-isomorphism

Definition

- a DGA homomorphism $f: (A,d) \xrightarrow{\simeq^{\mathbf{q}}} (B,d)$ is a *quasi-isomorphism* $\overset{\mathrm{def}}{\Longrightarrow} H^*(f) \colon H^*(A,d) \xrightarrow{\cong} H^*(B,d)$ is an isomorphism
- two DGA's (A,d),(B,d) are quasi-isomorphic $\stackrel{\text{def}}{\Longleftrightarrow}$ there is a sequence of quasi-isomorphisms of the form: $(A,d)\stackrel{\simeq^{\mathbf{q}}}{\longleftrightarrow} (C_1,d)\stackrel{\simeq^{\mathbf{q}}}{\longleftrightarrow} (C_2,d)\stackrel{\simeq^{\mathbf{q}}}{\longleftrightarrow} \cdots \stackrel{\simeq^{\mathbf{q}}}{\longleftrightarrow} (C_n,d)\stackrel{\simeq^{\mathbf{q}}}{\longleftrightarrow} (B,d)$

polynomial differential form

$\mathsf{Theorem}(\mathsf{Sullivan})$

X: space

There is a commutative DGA $A^*_{\mathrm{PL}}(X)$ which is quasi-isomorphic to $C^*(X)$

An element $\omega \in A^*_{\mathrm{PL}}(X)$ is called a *polynomial differential form*, which is a "simplicial version" of a differential form (with polynomial coefficients).

 $A_{\rm PL}^*(X)$ is easier than $C^*(X)$ because of commutativity, but still difficult to compute by hand

→ consider Sullivan models

Sullivan algebra

 $\land V = \operatorname{Polynomial}(V^{\operatorname{even}}) \otimes \operatorname{Exterior}(V^{\operatorname{odd}})$ free commutative graded algebra generated by graded $\mathbb Q$ -module V

Definition(Sullivan algebra)

A (1-connected) Sullivan algebra is a DGA of the form $(\land V,d)$ with $V=\{V^n\}_{n\geq 2}.$

The multiplication on a Sullivan algebra is very easy, but the differential on it can be difficult

Sullivan model

Theorem(Sullivan)

(A,d): commutative DGA with $H^0(A,d)=\mathbb{Q}, H^1(A,d)=0$ There is a Sullivan algebra $(\wedge V,d)$ and a quasi-isomorphism

$$\varphi \colon (\land V, d) \xrightarrow{\cong^{\mathbf{q}}} (A, d)$$

 φ (or $(\land V, d)$): Sullivan model of (A, d) a Sullivan model of a space X is a Sullivan model of $A^*_{\mathrm{PL}}(X)$

Examples of Sullivan models (1)

$$\wedge (x_1, \dots x_n) = \wedge (\operatorname{span}_{\mathbb{Q}}(x_1, \dots, x_n))$$

Example1

- $oldsymbol{0}$ $(\wedge(x), dx=0)$ with |x|=2n+1 is a Sullivan model of the (2n+1)-dimensional sphere S^{2n+1}
- ② $(\land(x,y),dx=0,dy=x^2)$ with |x|=2n,|y|=4n-1 is a Sullivan model of the 2n-dimensional sphere S^{2n}

Examples of Sullivan models (2)

Example1

- **1** $(\land(x), dx = 0)$ is a Sullivan model of S^{2n+1}
- **2** $(\land(x,y), dx = 0, dy = x^2)$ is a Sullivan model of S^{2n}

 $LX = Map(S^1, X)$ the free loop space on a space X

Example2

- ② $(\land(x,y,\bar{x},\bar{y}),dx=0,dy=x^2,d\bar{x}=0,d\bar{y}=-2x\bar{x})$ with $|x|=2n,|y|=4n-1,|\bar{x}|=2n-1,|\bar{y}|=4n-2$ is a Sullivan model of LS^{2n}

- Introduction
- 2 Review on rational homotopy theory
- 3 Demonstration

Demonstration

We give demonstrations of our computer program.

Thank you for your attention!