Parametrization for intersecting 3－punctured spheres in hyperbolic 3－manifolds

吉田 建一（Ken＇ichi YOSHIDA）

Department of Mathematics，Kyoto University
October 20， 2017

The hyperbolic space

\mathbb{H}^{3} ：the hyperbolic 3 －space

$$
\cong\left\{(x, y, t) \in \mathbb{R}^{3} \mid t>0\right\}
$$

with the metric $d s^{2}=\left(d x^{2}+d y^{2}+d t^{2}\right) / t^{2}$
（the upper half－space model）
geodesic in \mathbb{H}^{3}
 circular arc or line orthogonal to the plane $\left\{(x, y, 0) \in \mathbb{R}^{3}\right\}$

Identifications：
－$\left\{(x, y, 0) \in \mathbb{R}^{3}\right\} \cong \mathbb{C}(\ni x+i y)$
－$\partial \mathbb{H}^{3} \cong \mathbb{C} \cup\{\infty\}$
－ori．－preserving isometry of $\mathbb{H}^{3} \longleftrightarrow$ Möbius transformation of $\mathbb{C} \cup\{\infty\}$ $\operatorname{Isom}{ }^{+}\left(\mathbb{H}^{3}\right) \cong \operatorname{PSL}(2, \mathbb{C})(=\operatorname{SL}(2, \mathbb{C}) / \pm 1)$
－$\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C}) \cong\left\{z=x+i y \mapsto \frac{a z+b}{c z+d}\right\}$

Types of isometries of \mathbb{H}^{3}

An orientation－preserving isometry of \mathbb{H}^{3} is one of the following types：
－identity
－elliptic－fixing pointwise a geodesic in \mathbb{H}^{3}
－parabolic－fixing a single point in $\partial \mathbb{H}^{3}$
－hyperbolic（loxodromic）－fixing two points in $\partial \mathbb{H}^{3}$（fixing setwise a geodesic in \mathbb{H}^{3} ）

elliptic

parabolic

Types and traces

The types are determined by the trace．
－elliptic $\sim\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C})(|\lambda|=1) \Longleftrightarrow-2<$ trace <2
－parabolic $\sim\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C}) \Longleftrightarrow$ trace $= \pm 2$
－hyperbolic $\sim\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C})(|\lambda| \neq 1) \Longleftrightarrow$ trace $\notin[-2,2]$
（up to conjugacy）

Hyperbolic 3－manifold

M：an orientable hyperbolic 3－manifold
（hyperbolic：\Longleftrightarrow having a complete metric of sectional curvature -1 ）
$\Longrightarrow M \cong \mathbb{H}^{3} / \pi_{1}(M)$ ，where $\pi_{1}(M)$ is regarded as a discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$ ．
－elliptic element $\notin \pi_{1}(M)$
－parabolic element $\in \pi_{1}(M) \longleftrightarrow$ loop in a＂cusp＂of M
－hyperbolic element $\in \pi_{1}(M) \longleftrightarrow$ closed geodesic in M
(up to conjugacy)

Cusp of a hyperbolic 3－manifold

If $\operatorname{vol}(M)<\infty$ ，then M is homeomorphic to the interior of a compact 3－manifold \bar{M} with boundary consisting tori．In this case，a cusp of M is a component of $\partial \bar{M}$ ．（In general，there may be annular cusps in the boundary．）
A neighborhood of a torus cusp is isometric to $\left\{(x, y, t) \in \mathbb{H}^{3} \mid t>t_{0}\right\} /\langle z \mapsto z+1, z \mapsto z+\tau\rangle$ for some $t_{0}>0$ and $\tau \in \mathbb{C}$ with $\operatorname{Im}(\tau)>0 .(z=x+i y.) \tau$ is called the modulus of the cusp T with respect to fixed generators of $\pi_{1}(T)$ ．

There are many links whose complement is hyperbolic．For example：

3－punctured sphere in a hyperbolic 3－manifold

A 3－punctured sphere（a．k．a．a pair of pants）is an orientable surface of genus 0 with 3 punctures．
A totally geodesic 3－punctured sphere is the double of an ideal hyperbolic triangle．The（complete）hyperbolic structure of a 3－punctured sphere is unique．

Theorem（Adams（1985））

An essential（properly embedded）3－punctured sphere in a hyperbolic 3－manifold is isotopic to a totally geodesic 3－punctured sphere．

By taking conjugacies， we may assume $x=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $y=\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$ ． $\operatorname{tr}\left(x y^{-1}\right)= \pm 2 \Longleftrightarrow c=0$ or 2 ．
Then we have $c=2$ ．

Union of 3－punctured spheres

$$
A_{n} \quad(n \geq 1) \quad B_{2 n} \quad(n \geq 1)
$$

T_{3}

．．．etc．

The index indicates the number of 3－punctured spheres．

Cusp modulus for A_{n}

The metric of neighborhood of 3－punctured spheres of the type A_{n} for $n \geq 2$ is determined by the modulus $\tau \in \mathbb{C}$ of cusps．（The moduli of the adjacent cusps coincide．）

We may assume that
$x=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right], y=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], z=\left[\begin{array}{cc}1 & 2 / \tau \\ 0 & 1\end{array}\right], w=\left[\begin{array}{cc}1 & 0 \\ 2 \tau & 1\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C})$ ．
$\left(x y^{-1}=\left[\begin{array}{ll}-3 & 2 \\ -2 & 1\end{array}\right]\right.$ and $z w^{-1}=\left[\begin{array}{cc}-3 & 2 / \tau \\ -2 \tau & 1\end{array}\right]$ are parabolic．）

Bounds of moduli

Consider the set $\mathcal{C}_{n}:=\{\tau \in \mathbb{C} \mid \tau$ is the modulus for 3 －punctured spheres of A_{n} contained in a hyperbolic 3－manifold $\}$ ． （not assumed to have finite volume）

Lemma（The Shimizu－Leutbecher lemma）

Suppose that a group generated by two elements

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \operatorname{PSL}(2, \mathbb{C}) \text { is discrete. Then } c=0 \text { or }|c| \geq 1 / 2
$$

We apply the Shimizu－Leutbecher lemma for

$$
\begin{aligned}
& \left\langle x=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], y^{n} w^{m}=\left[\begin{array}{cc}
1 & 0 \\
2 m \tau+2 n & 1
\end{array}\right]\right\rangle \text { and } \\
& \left\langle y=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right], x^{n} z^{m}=\left[\begin{array}{cc}
1 & (2 m / \tau)+2 n \\
0 & 1
\end{array}\right]\right\rangle .
\end{aligned}
$$

Rough bound

Proposition

$\tau \in \mathcal{C}_{2}$ satisfies the following inequalities：
$|m \tau+n| \geq 1 / 4$ and $|(m / \tau)+n| \geq 1 / 4$ for $(m, n) \in \mathbb{Z} \times \mathbb{Z} \backslash(0,0)$ ． In particular，$\frac{1}{4} \leq|\tau| \leq 4$ and $0.079 \leq \arg \tau \leq \pi-0.079$ ．

Sets of moduli

Consider the 4－punctured sphere Σ near the 3－punctured spheres of A_{n} in a hyperbolic 3－manifold M ．（ Σ bounds M_{n}^{τ} ．）

$\mathcal{C}_{n}^{\text {incomp }}:=\left\{\tau \in \mathcal{C}_{n} \mid \Sigma\right.$ is incompressible $\}$
$\mathcal{C}_{n}^{\text {comp }}:=\left\{\tau \in \mathcal{C}_{n} \mid \Sigma\right.$ is compressible $\}$
$\mathcal{C}_{n}=\mathcal{C}_{n}^{\text {incomp }} \cup \mathcal{C}_{n}^{\text {comp }}$

The case that Σ is incompressible

$\tau \in \mathcal{C}_{n}^{\text {incomp }} \Longrightarrow M_{n}^{\tau}$ extends an infinite volume hyperbolic 3－manifold homeomorphic to M_{n}^{τ} ．
$\operatorname{int}\left(\mathcal{C}_{n}^{\text {incomp }}\right) \cong$ the Teichmüller space of Σ（homeomorphic to an open disk）
$\mathcal{C}_{n}^{\text {incomp }}=\operatorname{cl}\left(\operatorname{int}\left(\mathcal{C}_{n}^{\text {incomp }}\right)\right)$（homeomorphic to a closed disk） $\partial \mathcal{C}_{n}^{\text {incomp }} \cong \mathbb{R} \cup\{\infty\}$
－rational point in \mathbb{R} or $\infty \longleftrightarrow$ cusp
－irrational point in $\mathbb{R} \longleftrightarrow$ ending lamination

Example：slope $=3 / 2$

The case that Σ is compressible

$$
\begin{aligned}
\tau \in \mathcal{C}_{n}^{\text {comp }} & \longrightarrow M=M_{n}^{\tau} \cup(\text { a trivial tangle }) . \\
& \text { (} \mathcal{C}_{2}^{\text {comp }} \\
\text { - } \mathcal{C}_{3}^{\text {comp }} & \longleftrightarrow \mathbb{Q} \backslash\{0,1,2\} \\
\text { - } \mathcal{C}_{n}^{\text {comp }} & \longleftrightarrow \mathbb{Q} \backslash\{0\} \\
& \longleftrightarrow \mathbb{Q}(n \geq 4)
\end{aligned}
$$

Shape of \mathcal{C}_{n}

For hyperbolic 3－manifolds of finite volume

$\mathcal{C}_{n}^{\mathrm{fin}}:=\left\{\tau \in \mathbb{C} \mid \tau\right.$ is the modulus for 3 －punctured spheres of A_{n} contained in a hyperbolic 3－manifold of finite volume $\}$
$\mathcal{C}_{n}^{\text {comp }} \subset \mathcal{C}_{n}^{\text {fin }}$.

Theorem（Brooks（1986））

Let $\Gamma<\operatorname{PSL}(2, \mathbb{C})$ be a geometrically finite Kleinian group．Then there exist arbitrarily small quasi－conformal deformations Γ_{ϵ} of Γ ，such that Γ_{ϵ} admits an extension of the fundamental group of a finite volume hyperbolic 3－manifold．

Corollary

$\mathcal{C}_{n}^{\text {fin }}$ is dense in \mathcal{C}_{n} ．

Way to compute

To plot points of $\partial \mathcal{C}_{n}^{\text {incomp }}$ ，consider the condition that a simple loop in Σ is an annular cusp．
Solve equations：
$-2=$ trace of an element represented by a simple loop in Σ ．
We will not avoid plotting unnecessary points outside $\mathcal{C}_{n}^{\text {incomp }}$ ．

Remark： $\mathcal{C}_{n+1} \subset \mathcal{C}_{n}, \mathcal{C}_{n+1}^{\text {incomp }} \subset \mathcal{C}_{n}^{\text {incomp }}, \mathcal{C}_{n+2} \subset \mathcal{C}_{n}^{\text {incomp }}$.

Computation for $\mathcal{C}_{2}^{\text {incomp }}$

Caution：No information of $\mathcal{C}_{2}^{\text {comp }}$ ．

Computation for $\mathcal{C}_{3}^{\text {incomp }}$

Caution：No information of $\mathcal{C}_{3}^{\text {comp }}$ ．

Computation for $\mathcal{C}_{4}^{\text {incomp }}$

Caution：No information of $\mathcal{C}_{4}^{\text {comp }}$ ．

Limit of moduli

Theorem（Y．）
 Let $\tau_{n} \in \mathcal{C}_{n}$ for $n \geq 2$ ．Then $\lim _{n \rightarrow \infty} \tau_{n}=2 i$ ．

$2 i=$ the modulus for the 3 －punctured spheres of A_{n} contained in the ones of $B_{2 n}$ ．

Drilling theorem

Theorem（Brock－Bromberg（2004）＋Hodgson－Kerckhoff（2008））

For any $K>1$ ，there is a constant L satisfying the following condition： Let M be a finite volume hyperbolic 3－manifold．Let M_{0} be a Dehn filling of M along a slope whose normalized length is more than L．Then thick parts of M and M_{0} are K－bilipschitz．

The normalized length of a slope is measured after rescaling the metric on the cusp torus to have unit area．

Lemma

Suppose that a finite volume hyperbolic 3－manifold M has 3－punctured spheres $\Sigma_{1}, \ldots, \Sigma_{n}$ of the type A_{n} ．Then M is obtained by a Dehn filling of a hyperbolic 3－manifold M_{0} with 3－punctured spheres of the type $B_{2 n}$ containing $\Sigma_{1}, \ldots, \Sigma_{n}$ ．Moreover，the normalized length of the slope for this Dehn filling is at least $\sqrt{n+1} / 2$ ．

