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In this talk, we develop the theory of random holomorphic dynamics.

Applying it to finding roots of polynomials by random relaxed Newton’s

methods, we show that for any polynomial g, for any initial value z ∈ C
which is not a root of g′, the random orbit starting with z tends to a

root of g almost surely, which is the virtue of the effect of the

randomness.
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Definition 1. We use the following notations.

(1) We denote by Ĉ := C ∪ {∞} ∼= S2 the Riemann sphere endowed

with the spherical distance.

(2) We set P := {h : C → C | h is a polynomial,deg(h) ≥ 2}.

(3) We set Λ := {λ ∈ C | |λ− 1| < 1}. Also, let M1,c(Λ) be the space of

all Borel probability measures τ on Λ whose topological support supp τ

is a compact subset of Λ.

For each τ ∈ M1,c(Λ), let τ̃ := ⊗∞
n=1τ. This is a Borel probability

measure on ΛN.

(4) For each g ∈ P and for each λ ∈ Λ, let Ng,λ : Ĉ → Ĉ be the rational

map defined by Ng,λ(z) = z − λ g(z)
g′(z) for each z ∈ Ĉ. This is called the

random relaxed Newton’s method map for g.

(5) For each g ∈ P, let Qg := {x ∈ C | g(x) = 0} and

Ωg := C \ {z0 ∈ C | g′(z0) = 0, g(z0) ̸= 0}.
2



Remark 2. Note that ♯(C \ Ωg) ≤ deg(g)− 1.

Theorem 3 (Main Theorem). Let g ∈ P. Let τ ∈ M1,c(Λ) such that

int(supp τ) ⊃ {λ ∈ C | |λ− 1| ≤ 1

2
},

where int(supp τ) denotes the set of interior points of supp τ with

respect to the topology in Λ. Suppose that τ is absolutely continuous

with respect to the Lebesgue measure on Λ. (e.g. suppose that τ is the

normalized 2-dimensional Lebesgue measure on {λ ∈ C | |λ− 1| ≤ r}
where 1

2 < r < 1.) Then we have the following.

• For each z ∈ Ωg, there exists a Borel subset Cg,τ,z of ΛN with

τ̃(Cg,τ,z) = 1 satisfying that for each γ = (γ1, γ2, . . .) ∈ Cg,τ,z,

there exists an element x = x(g, τ, z, γ) ∈ Qg such that

Ng,γn
◦ · · · ◦Ng,γ1

(z) → x as n → ∞ (exponentially fast).
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We say that a non-constant polynomial g is normalized if

{z0 ∈ C | g(z0) = 0} ⊂ D := {z ∈ C | |z| < 1}.

For a given polynomial g, sometimes it is not difficult for us to find an

element a ∈ R \ {0} such that g(az) is a normalized polynomial of z.

It is well-known that if g ∈ P is a normalized polynomial, then so is g′.

Thus, we obtain the following corollary.

Corollary 4. Let g ∈ P be a normalized polynomial. Let τ ∈ M1,c(Λ)

such that int(supp τ) ⊃ {λ ∈ C | |λ− 1| ≤ 1
2}. Suppose that τ is

absolutely continuous with respect to the Lebesgue measure on Λ.

Let z0 ∈ C \ D.
Then for τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ ΛN, the orbit

{Ng,γn ◦ · · · ◦Ng,γ1(z0)}∞n=1 tends to a root x = x(g, τ, γ) of g.
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Moreover, if, in addition to the assumptions of our corollary, we know

the coefficients of g explicitly, then by the following algorithm (1)(2)(3)

in which we consider d-random orbits of z0 under d-different random

iterations of {Ng1,λ}λ, . . . , {Ngd,λ}λ for some polynomials g1, . . . , gd,

we can find all roots of g almost surely with arbitrarily small errors.

(1) Let g1 = g. By Theorem 3, for τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ ΛN, the orbit

{Ng1,γn
◦ · · · ◦Ng1,γ1

(z0)}∞n=1 tends to a root x = x(g1, τ, γ) of

g1 = g. Let x1 be one of such x(g, τ, γ) (with aribitrarily small error).

(2) Let g2(z) = g1(z)/(z − x1). By using synthetic devision, we regard g2
as a polynomial which devides g1 (with arbitrarily small error).

Note that g2 is a normalized polynomial. By Theorem 3, for

τ̃ -a.e.γ = (γ1, γ2 . . .) ∈ ΛN, the orbit {Ng2,γn ◦ · · · ◦Ng2,γ1(z0)}∞n=1

tends to a root x = x(g2, τ, γ) of g2, which is also a root of g (with

arbitrarily small error).

Let x2 be one of such x(g2, τ, γ) (with arbitrarily small error).
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(3) Let g3(z) = g2(z)/(z − x2) and as in the above, we find a root x3 of

g3, which is also a root of g (with arbitrarily small error).

Continue this method.

Remark 5. (I) M. Hurley showed that for any k ≥ 3, there exists a

non-empty open subset Ak of Pk := {g ∈ P | deg(g) = k} such that for

each g ∈ Ak, there exists a non-empty open subset Ug of Ĉ such that for

any z ∈ Ug, the orbit {Nn
g,1(z)}∞n=1 cannot converge to any root of g.

(II) C. McMullen showed (Ann. of Math., 1987) that for any

k ∈ N, k ≥ 4 and for any l ∈ N, there exists NO rational map

Ñ : Pk → Ratl := {f ∈ Rat | deg(f) = l} such that “for any g in an

open dense subset of Pk, for any z in an open dense subset of Ĉ,
Ñ(g)n(z) tends to a root of g as n → ∞.”

(III) Thus Theorem 3 and Corollary 4 deal with randomness-induced

phenomena (new phenomena in random dynamics which cannot hold in

deterministic dynamics).
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Remarks.

In Theorem 3 and Corollary 4, the size of the noise is big which

enables the system to make the minimal set with period greater

than 1 collapse.

However, since the size of the noise is big, we have to develop the theory

of random holomorphic dynamical systems with noise or randomness of

any size.

Note also that we need to deal with the random systems

whose “kernel Julia sets” are not empty.
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Outline of the Proof of Theorem 3.

(1) Let g, τ be as in the assumptions of Theorem 3.

Let
Gτ := {Ng,γn

◦ · · · ◦Ng,γ1
| n ∈ N, γj ∈ supp τ (∀j)}.

This is a semigroup whose product is the composition of maps.

Let

F (Gτ ) := {z ∈ Ĉ | Gτ is equicontinuous in a nbd of z}.

This is called the Fatou set of Gτ .

Let
J(Gτ ) := Ĉ \ F (Gτ ).

This is called the Julia set of Gτ .

Let
Jker(Gτ ) :=

∩
h∈Gτ

h−1(J(Gτ )).

This is called the kernel Julia set of Gτ .
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(2) Montel’s theorem implies that

♯(Jker(Gτ )) < ∞.

(Remark. This cannot hold for any deterministic complex dyn.
system of an f with deg(f) ≥ 2.)

(3) By using this and some technical arguments, we can show that

there exist finitely many attracting minimal sets K1, . . . ,Km of Gτ

s. t. for ∀z ∈ Ωg, for τ̃ -a.e. γ = (γ1, γ2, . . . , ) ∈ ΛN, we have

d(Ng,γn ◦ · · · ◦Ng,γ1(z),∪m
j=1Kj) → 0 as n → ∞. (⋆)

Here, we say that a non-empty compact subset K of Ĉ is

a minimal set of Gτ if for any z ∈ K, ∪h∈Gτ
{h(z)} = K.

Remark. Thus the chaoticity is much less than that of deterministic

complex dynamical systems.

In the proof of (⋆), the difficulty is that ∞ ∈ Ĉ is a common

repelling fixed point of Ng,λ and ∞ ∈ Jker(Gτ ), thus Jker(Gτ ) ̸= ∅.
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(4) We can show that for each j = 1, . . . ,m, either

(i) Kj = {x} for some x ∈ Qg, or (ii) Kj ∩Qg = ∅.
(5) We want to exclude the case (ii) Kj ∩Qg = ∅

(if we can do that, then the proof of Theorem 3 is complete).

(6) In order to do so, let j ∈ {1, . . . ,m} and suppose Kj ∩Qg = ∅.
Then Kj contains an attracting periodic cycle z1, . . . , zp of Ng,1

with period p ≥ 2, where zi+1 = Ng,1(zi) (i = 1, . . . , p), zp+1 = z1.

(7) We may suppose that |z1 − z2| = max{|zi − zi+1| | i = 1, . . . , p}.

(8) Since int(supp τ) ⊃ D(1, 1
2 ) by our assumption, we see

int({Ng,λ(zi) | λ ∈ supp τ}) ⊃ D(zi+1,
|zi−zi+1|

2 ) for each i = 1, 2.

(9) Since |z1−z2|
2 + |z2−z3|

2 ≥ |z2 − z3|, it follows that
int(Kj) ⊃ int({Ng,λ(zi) | λ ∈ supp τ, i = 1, 2}) ⊃ segment z2z3,

which implies that Kj ∩ J(Ng,1) ̸= ∅. However, this contradicts that
Kj is attracting and Kj ⊂ F (Gτ ) ⊂ F (Ng,1). QED.
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For the preprint, see [3].
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