Homology groups of neighborhood complexes of graphs
(Introduction to topological combinatorics)

Y. Hara

October 21, 2017
Chromatic number

\(G = (V, E) \) : simple graph (no loop, no multi edge)

\([n] := \{1, 2, \ldots, n\}\)

\(c : V \to [n] \) is a coloring \(\overset{\text{def.}}{\iff} \{u, v\} \in E \Rightarrow c(u) \neq c(v)\)

We define the chromatic number \(\chi(G) \) of \(G \) by

\[\chi(G) = \min \{ n \in \mathbb{N} \mid \exists c : V \to [n] \text{ coloring} \} \]

We define the complete graph \(K_n \) by

\[V(K_n) = [n], \ E(K_n) = \{\{u, v\} \mid u, v \in [n], u \neq v\} \ . \]

We can easily see \(\chi(K_n) = n \).

Let \(C_n \) be a graph such that

\[V(C_n) = [n], \ E(C_n) = \{\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}, \{n, 1\}\} \ . \]

\(n \) is even \(\Rightarrow \) \(\chi(C_n) = 2 \). \(n \) is odd \(\Rightarrow \) \(\chi(C_n) = 3 \).
Neighborhood complexes

\[G = (V, E) : \text{simple graph (no loop, no multi edge)} \]
\[A \subseteq V \]
\[CN(A) := \{v \mid \{v, a\} \in E \text{ for } \forall a \in A\} \]
\[N(G) := \{A \subseteq V \mid CN(A) \neq \emptyset\} \text{ (neighborhood complex)} \]
\[N(G) \text{ is a simplicial complex.} \]
\[\{A \mid A \text{ is a maximal face of } N(G)\} \subset \{CN(\{v\}) \mid v \in V(G)\} \]

The homology groups of \(N(G) \) can be easily calculated using a computer.
\[CN(\{1\}) = \{2, 6, 7\}, \quad CN(\{2\}) = \{1, 3, 4\}, \]
\[CN(\{3\}) = \{2, 4\}, \quad CN(\{4\}) = \{2, 3, 5\}, \quad CN(\{5\}) = \{4, 6\}, \]
\[CN(\{6\}) = \{1, 5\}, \quad CN(\{7\}) = \{1, 8\}, \quad CN(\{8\}) = \{7\} \]

Proposition

\[N(K_n) = \Delta_{n-1} \text{ (the set of all proper faces of a } (n - 1)\text{-simplex } \Delta_{n-1}) \]
Box complexes

\[
G = (V, E) \quad A_1, A_2 \subset V
\]

\[
A_1 \uplus A_2 \overset{\text{def.}}{=} A_1 \times \{1\} \cup A_2 \times \{2\} \subset V \times \{1, 2\}
\]

\[
B(G) := \{A_1 \uplus A_2 \mid A_1, A_2 \subset V, A_1 \cap A_2 = \emptyset, \quad "u \in A_1, v \in A_2 \Rightarrow \{u, v\} \in E", \quad CN(A_1) \neq \emptyset \text{ or } CN(A_2) \neq \emptyset \}
\]

Proposition

\[
|B(G)| \sim |N(G)|
\]

\[
T : B(G) \to B(G), \quad A_1 \uplus A_2 \mapsto A_2 \uplus A_1 \quad (T^2 = 1)
\]

\[
B(G) \text{ is a free } \mathbb{Z}_2\text{-space.}
\]
Graph homomorphisms

$G, H : \text{simple graphs}$

$f : V(G) \to V(H)$ is a graph homomorphism

\[\text{def} \quad \{u, v\} \in E(G) \Rightarrow \{f(u), f(v)\} \in E(G) \]

\[\chi(G) = n \iff \exists \text{ graph hom } G \to K_n \]

\[\not\exists \text{ graph hom } G \to K_{n-1} \]

A graph hom $f : V(G) \to V(H)$ induce a simplicial map

$B(f) : B(G) \to B(H), A_1 \uplus A_2 \mapsto f(A_1) \uplus f(A_2)$.

$B(f)$ is a \mathbb{Z}_2-map.

\[(B(f)(T(A_1 \uplus A_2))) = B(f)(A_2 \uplus A_1) = f(A_2) \uplus f(A_1) = T(f(A_1) \uplus f(A_2)) = T(B(f)(A_1 \uplus A_2)) \]

\[\chi(G) = n \Rightarrow \exists g : |B(G)| \to |B(K_n)| \text{ \mathbb{Z}_2-map} \]
A generalized Borsuk-Ulam theorem

\(K, L : \) free \(\mathbb{Z}_2 \)-simplicial complexes (\(K \) and \(L \) are finite)

\(K \) is connected and \(H_p(K; \mathbb{Z}/2) = 0 \) for \(1 \leq p \leq n \). \(H_p(L; \mathbb{Z}/2) = 0 \) for \(p \geq n + 1 \)

Then, there is no \(\mathbb{Z}_2 \)-map from \(|K| \) to \(|L| \).

\(|B(G)| \approx |N(G)|, \ |B(K_k)| \approx |N(K_k)| \approx S^{k-2} \)

Theorem (Lovász + x)

If \(N(G) \) is connected and \(H_p(N(G); \mathbb{Z}/2) = 0 \) for \(1 \leq p \leq n \), then \(\chi(G) \geq n + 3 \).
Kneser-Lovász theorem

Kneser graph $KG_{n,k}$ \hspace{1em} (2k \leq n)

$V(KG_{n,k}) = \binom{[n]}{k}$ \hspace{1em} $\binom{[n]}{k} = \{A \subset [n] \mid |A| = k\}$

$A_1, A_2 \subset V(KG_{n,k})$, \hspace{1em} \{A_1, A_2\} $\in E(KG_{n,k}) \quad \overset{\text{def.}}{\iff} \quad A_1 \cap A_2 = \emptyset$

\[KG_{3,1} \hspace{4em} KG_{5,2} \]
Kneser-Lovász theorem (1978)

\[\chi(KG_{n,k}) = n - 2k + 2 \]

(proof) c: \(V(KG_{n,k}) \rightarrow [n - 2k + 2] \), \(A \mapsto \min\{\min A, n - 2k + 2\} \)
is a coloring. (\(\therefore \chi(KG_{n,k}) \leq n - 2k + 2 \).)

Lovász proved that \(|N(KG_{n,k})| \) is \((n - 2k - 1) \)-connected.
\(\therefore \chi(KG_{n,k}) \geq (n - 2k - 1) + 3 = n - 2k + 2 \).

Remark. In fact, Lovász consider
\[\mathcal{L}(G) = \{(A_0, \ldots, A_k) \mid A_i \in N(G), CN^2(A_i) = A_i, A_0 \subset \cdots \subset A_k\} \]
which is a subcomplex of \(sd(N(G)) \). \(\mathcal{L}(G) \simeq N(G) \). \(\mathcal{L}(G) \) has a \(\mathbb{Z}_2 \)-action
by \(CN \).
G_1 and G_2 are examples such that $H_1(N(G_i);\mathbb{Z}_2) \neq 0$ and
\[\chi(G_i) = 4 \geq 3 + 0. \; (i = 1, 2)\]

\[
\begin{align*}
\text{ind}_{\mathbb{Z}_2} B(G) &:= \min\{n \mid \exists \; \mathbb{Z}_2\text{-map } f : |B(G)| \to S^n\} \\
\text{Proposition.} \quad \chi(G) &\geq \text{ind}_{\mathbb{Z}_2} B(G) + 2 \\
\text{ind}_{\mathbb{Z}_2} B(G_1) &= 2, \quad \text{ind}_{\mathbb{Z}_2} B(G_2) = 1,
\end{align*}
\]
G is a triangulation graph of D^2

\[\exists K : \text{a triangulation of } D^2 (|K| \approx D^2) \]

s.t. $G = K^{(1)} = \{ \sigma \in K | \dim \sigma \leq 1 \}$

G : triangulation graph of $D^2 \Rightarrow \chi(G) = 3$ or 4.

Theorem (Tomita)

G : triangulation graph of D^2

$|N(G)|$ is k-connected and is not $(k + 1)$-connected \(\Rightarrow \chi(G) = k + 3 \).
Circular chromatic number

c: \(V \rightarrow [n] \) is a \((n, k)\)-coloring \((n \geq 2k)\)

\[
\begin{align*}
def. \quad c \text{ is a coloring} \\
\text{such that} \\
k \leq |c(x) - c(y)| \leq n - k \text{ for all } \{x, y\} \in E
\end{align*}
\]

The circular chromatic number \(\chi_c(G) \) is defined by

\[
\chi_c(G) = \inf \left\{ \frac{n}{k} \mid \exists c: V \rightarrow [n] \text{ } (n, k)\text{-coloring} \right\}
\]

Proposition (Bondy-Hell)

1. If \(G \) has a \((p, q)\)-coloring, \(p/q \leq p'/q' \) (\(p' \) and \(q' \) are positive integers)

\[\Rightarrow \] \(G \) has a \((p', q')\)-coloring.

2. If \(|V(G)| = n \), \(G \) has a \((p, q)\)-coloring with \(\gcd(p, q) = 1 \) and \(p > n \)

\[\Rightarrow \] \(G \) has a \((p', q')\)-coloring with \(p' < p \) and \(p'/q' < p/q \).
Corollary

\[\chi_c(G) = \min \left\{ \frac{p}{q} \mid \exists c : V \rightarrow [p] \text{ (p, q)-coloring, } p \leq |V(G)| \right\} \]

Proposition (Bondy-Hell)

\[\chi(G) - 1 < \chi_c(G) \leq \chi(G). \]

(Proof) \((p, 1)\)-coloring \(c\) is a coloring \(c : V(G) \rightarrow [p]\). \(\therefore \chi_c(G) \leq \chi(G)\). If there exists a \((p, q)\)-coloring such that \(p/q \leq \chi(G) - 1\), then there exists a \((\chi(G) - 1, 1)\)-coloring by the proposition written in the previous page. \(\therefore \chi_c(G) > \chi(G) - 1\).
Theorem (P-A, Chen)

\[\chi_c(KG_{n,k}) = \chi(KG_{n,k}). \]

First, Johnson, Holroyd and Stahl studied the circular chromatic number of Kneser graphs, and conjectured that the above equality always holds (1997). Meunier and Simonyi-Tardos proved that if \(n \) is even then
\[\chi_c(KG_{n,k}) = \chi(KG_{n,k}), \] independently (2005, 2006). Chen completely proved the equality always holds (2011). Chang, Liu and Zhu give a short proof of this theorem (2013).
We recall

\[\chi(G) = \min \{ n \in \mathbb{N} | \exists f : V \to K_n \text{ graph hom} \} \]

For the circular chromatic number, we define a graph \(G_{p,q} \) by.

\[V(G_{p,q}) = [p] \]

\[\{u, v\} \in E(G_{p,q}) \iff q \leq |u - v| \leq p - q \]

Then, \(\chi_c(G) = \min \left\{ \frac{p}{q} | \exists f : V \to G_{p,q} \text{ graph hom.} \right\} \).

\[\exists f : G \to G_{p,q} \text{ graph hom.} \Rightarrow \exists \tilde{f} : |B(G)| \to |B(G_{p,q})| \mathbb{Z}_2\text{-map.} \]

We will study the topology of \(|B(G_{p,q})| (\sim |N(G_{p,q})|) \).
Theorem

\[p > 2q \]

In case \(2q \nmid p \),

\[
H_k(N(G_p,q); \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & (k = 0 \text{ or } k = 2\lfloor \frac{p}{2q} \rfloor - 1) \\ 0 & (k \neq 0, \lfloor \frac{p}{2q} \rfloor - 1) \end{cases}
\]

In case \(2q \mid p \),

\[
H_k(N(G_p,q); \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & (k = 0) \\ \mathbb{Z}^{2q-1} & (k = \frac{p}{q} - 2) \\ 0 & (k \neq 0, \frac{p}{q} - 2) \end{cases}
\]
Proposition

\(\chi(G) \) is even (\(\chi(G) \geq 4 \)), \(N(G) \) is connected and \(H_p(N(G); \mathbb{Z}/2) = 0 \) for \(1 \leq p \leq \chi(G) - 3 \),
\[\implies \chi_c(G) = \chi(G). \]

(Proof) Put \(n = \chi(G) \) and \(\frac{p}{q} = \chi_c(G) \). Assume that \(\frac{p}{q} < n \).

There is a graph homomorphism \(f: V(G) \to V(G_{p,q}) \).

We have the induced \(\mathbb{Z}_2 \)-map \(B(f): B(G) \to B(G_{p,q}) \).

Because \(B(G) \) is connected and \(H_p(B(G); \mathbb{Z}/2) \cong H_p(N(G); \mathbb{Z}/2) = 0 \) for \(1 \leq p \leq n - 3 \), there exist a integer \(k \) such that \(k \geq n - 2 \) and \(H_k(N(G_{p,q}); \mathbb{Z}/2) \cong H_k(B(G_{p,q}); \mathbb{Z}/2) \neq 0 \) (by a generalized Borsuk-Ulam theorem).

Because \(n \) is even and \(\frac{p}{q} < n \), \(\left\lfloor \frac{p}{2q} \right\rfloor = \frac{n}{2} - 1 \). Therefore \(H_k(N(G_{p,q}); \mathbb{Z}/2) = 0 \) for \(k \geq n - 2 \). This is contradiction. \(\square \)
For Kneser graph $KG_{n,k}$ ($n > 2k$), $\chi(KG_{n,k}) = n - 2k + 2$ and $H_p(N(KG_{n,k}); \mathbb{Z}/2) = 0$ for $1 \leq p \leq n - 2k - 1$.

Therefore if n is even, $\chi_c(KG_{n,k}) = \chi(KG_{n,k})$.

There exists a graph G such that $N(G)$ is connected, $H_p(N(G); \mathbb{Z}/2) = 0$ for $1 \leq p \leq \chi(G) - 3$ and $\chi_c(G) < \chi(G)$. ($\chi(G)$ is odd.)

$\chi(G_9,2) = 5$, $H_k(N(G_9,2); \mathbb{Z}/2) = 0$ for $k = 1, 2$,

$H_3(N(G_9,2); \mathbb{Z}/2) \cong \mathbb{Z}/2\mathbb{Z}$

$\chi_c(G_9,2) = \frac{9}{2} < \chi(G_9,2)$.