Homology groups of neighborhood complexes of graphs （Introduction to topological combinatorics）

原 靖浩

大阪大学

October 21， 2017

Chromatic number

$G=(V, E)$: simple graph(no loop, no multi edge)
$[n]:=\{1,2, \ldots, n\}$
$c: V \rightarrow[n]$ is a coloring $\stackrel{\text { def. }}{\Longleftrightarrow} "\{u, v\} \in E \Rightarrow c(u) \neq c(v)$ "
We define the chromatic number $\chi(G)$ of G by

$$
\chi(G)=\min \{n \in \mathbb{N} \mid \exists c: V \rightarrow[n] \text { coloring }\}
$$

We define the complete graph K_{n} by

$$
V\left(K_{n}\right)=[n], E\left(K_{n}\right)=\{\{u, v\} \mid u, v \in[n], u \neq v\} .
$$

We can easily see $\chi\left(K_{n}\right)=n$.
Let C_{n} be a graph such that

$$
V\left(C_{n}\right)=[n], E\left(C_{n}\right)=\{\{1,2\},\{2,3\}, \ldots,\{n-1, n\},\{n, 1\}\} .
$$

n is even $\Rightarrow \chi\left(C_{n}\right)=2 . n$ is odd $\Rightarrow \chi\left(C_{n}\right)=3$.

Neighborhood complexes

$G=(V, E)$: simple graph (no loop, no multi edge)
$A \subset V$
$C N(A):=\{v \mid\{v, a\} \in E$ for $\forall a \in A\}$
$N(G):=\{A \subset V \mid C N(A) \neq \emptyset\}$ (neighborhood complex)
$N(G)$ is a simplicial complex.
$\{A \mid A$ is a maximal face of $N(G)\} \subset\{C N(\{v\}) \mid v \in V(G)\}$

The homology groups of $N(G)$ can be easily calculated using a computer.

$C N(\{1\})=\{2,6,7\}, C N(\{2\})=\{1,3,4\}$,
$C N(\{3\})=\{2,4\}, C N(\{4\})=\{2,3,5\}, C N(\{5\})=\{4,6\}$,
$C N(\{6\})=\{1,5\}, C N(\{7\})=\{1,8\}, C N(\{8\})=\{7\}$
Proposition
$N\left(K_{n}\right)=\dot{\Delta}_{n-1}$ (the set of all proper faces of a $(n-1)$-simplex $\left.\Delta_{n-1}\right)$

Box complexes

$$
\begin{aligned}
& G=(V, E) \quad A_{1}, A_{2} \subset V \\
& A_{1} \uplus A_{2} \stackrel{\text { def. }}{=} A_{1} \times\{1\} \cup A_{2} \times\{2\} \subset V \times\{1,2\} \\
& B(G):=\left\{A_{1} \uplus A_{2} \mid A_{1}, A_{2} \subset V, A_{1} \cap A_{2}=\emptyset,\right. \\
& " u \in A_{1}, v \in A_{2} \Rightarrow\{u, v\} \in E^{\prime \prime}, \\
& \\
& \left.\quad C N\left(A_{1}\right) \neq \emptyset \text { or } C N\left(A_{2}\right) \neq \emptyset\right\}
\end{aligned}
$$

Proposition

$$
|B(G)| \simeq|N(G)|
$$

$T: B(G) \rightarrow B(G), A_{1} \uplus A_{2} \mapsto A_{2} \uplus A_{1} \quad\left(T^{2}=1\right)$
$B(G)$ is a free \mathbb{Z}_{2}-space.

Graph homomorphisms

G, H : simple graphs
$f: V(G) \rightarrow V(H)$ is a graph homomorphism

$$
\stackrel{\text { def }}{\Longleftrightarrow} "\{u, v\} \in E(G) \Rightarrow\{f(u), f(v)\} \in E(G) "
$$

$\chi(G)=n \Leftrightarrow\left\{\begin{array}{l}\exists \text { graph hom } G \rightarrow K_{n} \\ \exists \text { graph hom } G \rightarrow K_{n-1}\end{array}\right.$
A graph hom $f: V(G) \rightarrow V(H)$ induce a simplicial map
$B(f): B(G) \rightarrow B(H), A_{1} \uplus A_{2} \mapsto f\left(A_{1}\right) \uplus f\left(A_{2}\right)$.
$B(f)$ is a \mathbb{Z}_{2}-map.
$\left(B(f)\left(T\left(A_{1} \uplus A_{2}\right)\right)=B(f)\left(A_{2} \uplus A_{1}\right)=f\left(A_{2}\right) \uplus f\left(A_{1}\right)=T\left(f\left(A_{1}\right) \uplus f\left(A_{2}\right)\right)\right.$
$\left.=T\left(B(f)\left(A_{1} \uplus A_{2}\right)\right)\right)$
$\chi(G)=n \Rightarrow \exists g:|B(G)| \rightarrow\left|B\left(K_{n}\right)\right| \mathbb{Z}_{2}$-map

A generalized Borsuk-Ulam theorem

K, L : free \mathbb{Z}_{2}-simplicail complexes (K and L are finite)
K is connected and $H_{p}(K ; \mathbb{Z} / 2)=0$ for $1 \leqq p \leqq n . H_{p}(L ; \mathbb{Z} / 2)=0$ for $p \geqq n+1$
Then, there is no \mathbb{Z}_{2}-map from $|K|$ to $|L|$.

$$
|B(G)| \simeq|N(G)|,\left|B\left(K_{k}\right)\right| \simeq\left|N\left(K_{k}\right)\right| \approx S^{k-2}
$$

Theorem(Lovász + x)
If $N(G)$ is connected and $H_{p}(N(G) ; \mathbb{Z} / 2)=0$ for $1 \leqq p \leqq n$, then
$\chi(G) \geqq n+3$.

Kneser-Lovász theorem

$\underline{\text { Kneser graph } K G_{n, k}} \quad(2 k \leqq n)$

$$
V\left(K G_{n, k}\right)=\binom{[n]}{k} \quad\left(\binom{[n]}{k}=\{A \subset[n]| | A \mid=k\}\right)
$$

$A_{1}, A_{2} \subset V\left(K G_{n, k}\right)$,

$$
\left\{A_{1}, A_{2}\right\} \in E\left(K G_{n, k}\right) \stackrel{\text { def. }}{\Longleftrightarrow} A_{1} \cap A_{2}=\emptyset
$$

Kneser-Lovász theorem (1978)

$$
\chi\left(K G_{n, k}\right)=n-2 k+2
$$

(proof) c: $V\left(K G_{n, k}\right) \rightarrow[n-2 k+2], A \mapsto \min \{\min A, n-2 k+2\}$
is a coloring. $\left(\therefore \chi\left(K G_{n, k}\right) \leqq n-2 k+2\right.$. $)$
Lovász proved that $\left|N\left(K G_{n, k}\right)\right|$ is $(n-2 k-1)$-connected.
$\therefore \chi\left(K G_{n, k}\right) \geqq(n-2 k-1)+3=n-2 k+2$.
Remark. In fact, Lovász consider
$\mathcal{L}(G)=\left\{\left(A_{0}, \ldots, A_{k}\right) \mid A_{i} \in N(G), C N^{2}\left(A_{i}\right)=A_{i}, A_{0} \subset \cdots \subset A_{k}\right\}$
which is a subcomplex of $\operatorname{sd}(N(G)) . \mathcal{L}(G) \simeq N(G) . \mathcal{L}(G)$ has a \mathbb{Z}_{2}-action by $C N$.
G_{1} and G_{2} are examples such that $H_{1}\left(N\left(G_{i}\right) ; \mathbb{Z}_{2}\right) \neq 0$ and $\chi\left(G_{i}\right)=4 \supsetneqq 3+0 . \quad(i=1,2)$

$\operatorname{ind}_{\mathbb{Z}_{2}} B(G):=\min \left\{n \mid \exists \mathbb{Z}_{2}\right.$-map $\left.f:|B(G)| \rightarrow S^{n}\right\}$
Proposition. $\quad \chi(G) \geqq \operatorname{ind}_{\mathbb{Z}_{2}} B(G)+2$
$\operatorname{ind}_{\mathbb{Z}_{2}} B\left(G_{1}\right)=2, \quad \operatorname{ind}_{\mathbb{Z}_{2}} B\left(G_{2}\right)=1$,
G is a triangulation graph of D^{2}
$\stackrel{\text { def. }}{\Longleftrightarrow}\left\{\exists K:\right.$ a triangulation of $D^{2}\left(|K| \approx D^{2}\right)$

$$
\text { s.t. } G=K^{(1)}=\{\sigma \in K \mid \operatorname{dim} \sigma \leqq 1\}
$$

G :triangulation graph of $D^{2} \Rightarrow \chi(G)=3$ or 4 .

Theorem(Tomita)

G :triangulation graph of D^{2}
$|N(G)|$ is k-connected and is not $(k+1)$-connected $\Rightarrow \chi(G)=k+3$.

Circular chromatic number

$c: V \rightarrow[n]$ is a (n, k)-coloring $(n \geqq 2 k)$
$\stackrel{\text { def. }}{\Longleftrightarrow}\left\{\begin{array}{l}c \text { is a coloring } \\ k \leqq|c(x)-c(y)| \leqq n-k \text { for all }\{x, y\} \in E\end{array}\right.$
The circularl chromatic number $\chi_{c}(G)$ is defined by

$$
\chi_{c}(G)=\inf \left\{\left.\frac{n}{k} \right\rvert\, \exists c: V \rightarrow[n](n, k) \text {-coloring }\right\}
$$

Proposition(Bondy-Hell)

(1) G has a (p, q)-coloring, $p / q \leqq p^{\prime} / q^{\prime}\left(p^{\prime}\right.$ and q^{\prime} are positive integers) $\Rightarrow G$ has a $\left(p^{\prime}, q^{\prime}\right)$-coloring.
(2) $|V(G)|=n, G$ has a (p, q)-coloring with $\operatorname{gcd}(p, q)=1$ and $p>n$ $\Rightarrow G$ has a $\left(p^{\prime}, q^{\prime}\right)$-coloring with $p^{\prime}<p$ and $p^{\prime} / q^{\prime}<p / q$.

Corollary

$$
\chi_{c}(G)=\min \left\{\left.\frac{p}{q} \right\rvert\, \exists c: V \rightarrow[p](p, q) \text {-coloring, } p \leqq|V(G)|\right\}
$$

Proposition(Bondy-Hell)

$$
\chi(G)-1<\chi_{c}(G) \leqq \chi(G)
$$

(Proof) $(p, 1)$-coloring c is a coloring $c: V(G) \rightarrow[p] . \therefore \chi_{c}(G) \leqq \chi(G)$. If there exists a (p, q)-coloring such that $p / q \leqq \chi(G)-1$, then there exists a $(\chi(G)-1,1)$-coloring by the proposition written in the previous page. $\therefore \chi_{c}(G)>\chi(G)-1$.

The circular chromatic number of Kneser graphs

Theorem(P-A, Chen)

$$
\chi_{c}\left(K G_{n, k}\right)=\chi\left(K G_{n, k}\right)
$$

First, Johnson, Holroyd and Stahl studied the circular chromatic number of Kneser graphs, and conjectured that the above equality always holds(1997).
Meunier and Simonyi-Tardos proved that if n is even then $\chi_{c}\left(K G_{n, k}\right)=\chi\left(K G_{n, k}\right)$, independently $(2005,2006)$.
Chen completely proved the equality always holds(2011).
Chang, Liu and Zhu give a short proof of this theorem(2013).

We recall

$$
\chi(G)=\min \left\{n \in \mathbb{N} \mid \exists f: V \rightarrow K_{n} \text { graph hom }\right\}
$$

For the circular chromatic number, we define a graph $G_{p, q}$ by.
$V\left(G_{p, q}\right)=[p]$
$\{u, v\} \in E\left(G_{p, q}\right) \Leftrightarrow q \leqq|u-v| \leqq p-q$
Then, $\quad \chi_{c}(G)=\min \left\{\left.\frac{p}{q} \right\rvert\, \exists f: V \rightarrow G_{p, q}\right.$ graph hom. $\}$. $\exists f: G \rightarrow G_{p, q}$ graph hom. $\Rightarrow \exists \tilde{f}:|B(G)| \rightarrow\left|B\left(G_{p, q}\right)\right| \mathbb{Z}_{2}$-map.
We will study the topology of $\left|B\left(G_{p, q}\right)\right|\left(\simeq\left|N\left(G_{p, q}\right)\right|\right)$.

Theorem

$p>2 q$
In case $2 q \nmid p$,

$$
H_{k}\left(N\left(G_{p, q}\right) ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \left.\left(k=0 \text { or } k=2\left\lfloor\frac{p}{2 q}\right\rfloor-1\right)\right) \\ 0 & \left(k \neq 0,\left\lfloor\frac{p}{2 q}\right\rfloor-1\right)\end{cases}
$$

In case $2 q \mid p$,

$$
H_{k}\left(N\left(G_{p, q}\right) ; \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & (k=0) \\ \mathbb{Z}^{2 q-1} & \left(k=\frac{p}{q}-2\right) \\ 0 & \left(k \neq 0, \frac{p}{q}-2\right)\end{cases}
$$

Proposition

$\chi(G)$ is even $(\chi(G) \geqq 4), N(G)$ is connected and $H_{p}(N(G) ; \mathbb{Z} / 2)=0$ for $1 \leqq p \leqq \chi(G)-3$,
$\Longrightarrow \chi_{c}(G)=\chi(G)$.
(Proof) Put $n=\chi(G)$ and $\frac{p}{q}=\chi_{c}(G)$. Assume that $\frac{p}{q}<n$.
There is a graph homomorphism $f: V(G) \rightarrow V\left(G_{p . q}\right)$.
We have the induced \mathbb{Z}_{2}-map $B(f): B(G) \rightarrow B\left(G_{p . q}\right)$.
Because $B(G)$ is connected and $H_{p}(B(G) ; \mathbb{Z} / 2) \cong H_{p}(N(G) ; \mathbb{Z} / 2)=0$ for $1 \leqq p \leqq n-3$, there exist a integer k such that $k \geqq n-2$ and $H_{k}\left(N\left(G_{p, q}\right) ; \mathbb{Z} / 2\right) \cong H_{k}\left(B\left(G_{p, q}\right) ; \mathbb{Z} / 2\right) \neq 0$ (by a generalized Borsuk-Ulam theorem).
Because n is even and $\frac{p}{q}<n,\left\lfloor\frac{p}{2 q}\right\rfloor=\frac{n}{2}-1$. Therefore $H_{k}\left(N\left(G_{p, q}\right) ; \mathbb{Z} / 2\right)=0$ for $k \geqq n-2$. This is contradiction.

For Kneser graph $K G_{n, k}(n>2 k), \chi\left(K G_{n, k}\right)=n-2 k+2$ and $H_{p}\left(N\left(K G_{n, k}\right) ; \mathbb{Z} / 2\right)=0$ for $1 \leqq p \leqq n-2 k-1$.
Therefore if n is even, $\chi_{c}\left(K G_{n, k}\right)=\chi\left(K G_{n, k}\right)$.

There exists a graph G such that $N(G)$ is connected, $H_{p}(N(G) ; \mathbb{Z} / 2)=0$ for $1 \leqq p \leqq \chi(G)-3$ and $\chi_{c}(G)<\chi(G) .(\chi(G)$ is odd.)
$\chi\left(G_{9,2}\right)=5, \quad H_{k}\left(N\left(G_{9,2}\right) ; \mathbb{Z} / 2\right)=0$ for $k=1,2$,
$H_{3}\left(N\left(G_{9,2}\right) ; \mathbb{Z} / 2\right) \cong \mathbb{Z} / 2 \mathbb{Z}$
$\chi_{c}\left(G_{9,2}\right)=\frac{9}{2}<\chi\left(G_{9,2}\right)$.

