Topology and Computer 2017

Polyhedra with Spherical Faces and Quasi-Fuchsian Fractals

Kento Nakamura

Graduate School of Advanced Mathematical Science, Meiji University

'sphaira-' (= spherical) + '-hedron' (= polyhedron)New geometrical concept invented by Kazushi Ahara and Yoshiaki Araki (2003)

Quasi-sphere

One of the early examples of the 3-dimensional fractals

 $S^{3} = R^{3} \cup \{\infty\}$ closed-ball: $O_{1}, O_{2}, \dots, O_{n}$ $A = S^{3} - (O_{1} \cup O_{2} \dots \cup O_{n})$

One side of the simply connected two components of *A*

One side of the simply connected two components of *A*

One side of the simply connected two components of *A*

Semi-Sphairahedron

One side of the simply connected three or more components of *A*

Semi-Sphairahedron

One side of the simply connected three or more components of *A*

Sphairahedron Group

$f_i: Inversion in O_i$ $G = \langle f_0, f_1, \dots, f_n \rangle$

The Limit Set of G

Rationality and Ideality

Two properties to characterize sphairahedron If a sphairahedron is rational and ideal, *G* is discrete.

Rational Ideal Sphairahedron Group

Sphairahedron

Semi-sphairahedron

Quasi-sphere (homeomorphic to a sphere)

Rationality (Regularity)

All of the dihedral angles of edges is rational. $(\pi/n \text{ for the natural number } n)$

 $\pi/3$

 $\pi/2, \pi/3, \pi/6$

Ideality

All of the edges are mutually tangent at its vertex

Parameter Space

Derivation of Parameter Space

Cube-type sphairahedron

Graph Representation

 \odot

 ∞

Combination of Dihedral Angles

n = 3To fulfill a ideality, the sum of the dihedral angles at each vertex should be π 3 3

Combination of Dihedral Angles

Combination of Dihedral Angles

Derivation of Parameter Space

Fix prism and a sphere

- The prism is inscribed inside an unit circle.
- The height of the red sphere is 0.

Parameter

 z_b : The height of the green sphere z_c : The height of the blue sphere

Derivation of Parameter Space

All of the dihedral angles are $\pi/3$

Parameter space of the cube-type sphairahedron is studied by Ahara and Araki (2003) and also Ryo Kageyama (2016).

Rendering Technique

Ray Tracing

Suited for parallel computing by GPU

Ray Tracing

We have to compute an intersection between the ray and many sphairahedra

Find intersection between the ray and objects

Compute minimum distance to objects

Distance Function

A function returning the minimum distance between given point and object's surface

f(p) = distance(p, C) - r

Distance to Sphairahedron

float DistanceToSphairahedron (vec3 p) {
float d = DistanceToPrism(p);
d = max(-DistanceToSphereA(p), d);
d = max(-DistanceToSphereB(p), d);
d = max(-DistanceToSphereC(p), d);
return d;

Ray Tracing

Eye

We need the distance to the surface of the fractal

Experimental Sphairahedron Renderer

- https://soma-arc.net/SphairahedronExperiment/
- Environment ... JavaScript + WebGL2.0
- Some parameters may require high GPU Power
- Source code

https://github.com/soma-arc/SphairahedronExperiment