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Motivation
▸ This talk: study of manifolds up to (PL-)homeomorphism

manifolds ↔ triangulated manifolds (simplicial?)
▸

▸ combinatorial arguments / discrete methods prove geometric
and topological problems

▸ Fundamental task: distinguishing between manifolds, i.e.,
given triangulations M and N, is M /≅ N?
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Motivation

▸ Can we distinguish between manifolds?
▸ Dimension 1: 3
▸ Dimension 2: 3
▸ Dimension 3: Yes in theory. No in general in practice.
▸ Dimension ≥ 4: No.

▸ I.e., its trivial, extremely di�cult, or impossible to distinguish
between manifolds.

▸ Partial solution: topological invariants, properties of a
manifold which do not change under continuous deformation

▸ Turaev-Viro invariants: particularly powerful family of
topological invariants for 3-manifolds1 2

▸ Method of choice when, for example, enumerating 3-manifolds

1Matveev, Algorithmic Topology and Classi�cation of 3-manifolds, 2003
2Kau�mann and Lins, Computing Turaev-Viro inv. for 3-manifolds, 1991



Turaev-Viro invariants

The Turaev-Viro invariant with parameters r and q is a function

TVr ,q ∶ M → Q[ζ] ∩R

where

▸ M = set of triangulated 3-manifolds (connected, closed)

▸ ζ = e iπq/r ; r ,q ∈ Z co-prime; r ≥ 3; 0 < q < 2r

▸ Can be computed via purely combinatorial formulae.



Turaev-Viro invariants � state-sum model

▸ M ∈ M triangulated 3-manifold

▸ V , E , F , T its set of vertices, edges, triangles, and tetrahedra

▸ ϕ ∶ E → {0,1, . . . , r − 2} edge colouring satisfying the following
conditions at all triangles t of M:

▸

e1

e2

e3

t
ϕ(ei) + ϕ(ej) ≥ ϕ(ek) ∀i ≠ j ≠ k ≠ i

∑ϕ(ei) ≡ 0 mod 2 and ≤ 2r − 4

▸ Call the set of such admissible colourings Adm(M, r)
▸ For each ϕ ∈ Adm(M, r), edge e ∈ E , triangle t ∈ F , and
tetrahedron ∆ ∈ T we de�ne weights ∣e∣ϕ, ∣t ∣ϕ, and ∣∆∣ϕ in
Q[ζ] only depending on ϕ (and r and q)

▸ TVr ,q(M) = ∑
ϕ∈Adm(M,r)

(∏
e∈E

∣e∣ϕ ⋅ ∏
t∈F

∣t ∣ϕ ⋅ ∏
∆∈T

∣∆∣ϕ)
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An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

0

0

0

1

1

0

r = 4 (colours 0, 1, 2) ∈ #P-hard3:

3Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.
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Algorithm I: treewidth

▸ The treewidth of a graph measures how �treelike� a graph is
(trees have treewidth 1)

▸ The treewidth of a triangulated manifold M is the treewidth of
its dual graph

▸ Low treewidth ⇒ can arrange tetrahedra of M in a tree with
few tetrahedra grouped together per node of the tree (⇒ thin
tree decomposition)

1

2 3

6 7

54

8 9

1, 2, 4 2, 3, 4 3, 4, 5 3, 5, 6 6, 7

2, 3, 8

8, 9

leaf nodes

▸ Suitable for dynamic programming



Algorithm I: treewidth

Idea:

▸ Given a triangulation, compute a tree decomposition with few
tetrahedra per node (if possible)

▸ Enumerate admissible colourings and weights from the leave
nodes up

▸ Grouping partial colourings together wherever they look the
same at the current node



Algorithm I: treewidth

Theorem (Burton, Maria, S. 2015)

Given a triangulated 3-manifold M with n tetrahedra, and a tree

decomposition of M with largest node of size k, we can compute

TVr ,q in

O (n ⋅ (r − 1)6k ⋅ k2 ⋅ log r) .

▸ Running time is of type g(k) × poly(n). In the literature such
an algorithm is referred to as �xed parameter tractable (FPT)4

in k (�treewidth�)

▸ Common for FPT algorithms is a very bad parameter function
g ∶ N→ N (tower of exponentials)

▸ Here: g(k) = (r − 1)6k ⋅ k2 ⋅ log r vs. (r − 1)∣E ∣

▸ This is why we implemented the algorithm (also very rare for
FPT algorithms)

4Downey, Fellows, Parameterized complexity, Springer



Algorithm I: treewidth

Backtracking (seconds)

F
P

T
 (

se
co

nd
s)

0.01 0.1 1 10 100

0.
01

0.
1

1
10

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

treewidth 1 (2143 points)
treewidth 2 (10902 points)
treewidth 3 (14 points)
treewidth 4 (337 points)
treewidth 5 (1 point)
equal times

Running times for TV7,1 for the minimal 11-tetrahedra
triangulations of closed prime orientable 3-manifolds.



Observations

GOOD:

▸ works for all parameters r and q

▸ faster than naive enumeration

NOT GOOD:

▸ properties of triangulation, not manifold, determine running
time: �every manifold admits a triangulation with arbitrarily

high treewidth�

▸ exact treewidth might be di�cult to determine

▸ algorithm requires large amounts of memory

BETTER:

▸ Use parameter which is also a topological invariant

▸ Easy to compute, even if large
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Algorithm II: β1(M,Z2)

Lemma (Maria, S. 2016)

Let ϕ ∈ Adm(M,4) and let ϕ0 be the reduction of ϕ (i.e., all colors

mod 2). Then
∣M ∣ϕ = (−1)α(±

√
2)χ(Sϕ0),

where α denotes the number of octagons in Sϕ.

Proof (sketch):
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Algorithm II: β1(M,Z2)
Theorem (Maria, S. 2017)

M 1-vertex, n-tetrahedra triangulated 3-manifold with �rst Betti

number β1(M,Z2). Then there exists an algorithm to compute

TV4,q(M) with running time

O(2β1(M,Z2)n3)

in O(n2) memory and with O(2β1(M,Z2)) cyclotomic �eld

operations.

Practical improvements:

New algo. Treewidth algo.6 Z-hom. in Regina

≤ 11 tet. census 10.96 sec. 498 sec. 7.72 sec.

Theoretical improvements: Distinguishes roughly twice as many
manifolds as Z-homology on its own

6Burton, Maria, S., Algorithms and complexity for Turaev-Viro inv's., 2015



Algorithm II: β1(M,Z2)
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β1 = 1 (5632 points)
β1 = 2 (2043 points)
β1 = 3 (334 points)
β1 = 4 (19 points)
tw = 1 (2143 points)
tw = 2 (10902 points)
tw = 3 (14 points)
tw = 4 (337 points)
tw = 5 (1 point)
equal time

Running times for TV4,1 for the minimal 11-tetrahedra
triangulations of closed prime orientable 3-manifolds.
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