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Can we distinguish between manifolds?

Dimension 1:
Dimension 2:

Dimension 3: No in general in practice.
Dimension > 4: No.

l.e., its trivial, extremely difficult, or impossible to distinguish
between manifolds.

Partial solution: topological invariants, properties of a
manifold which do not change under continuous deformation

Turaev-Viro invariants: particularly powerful family of
topological invariants for 3-manifolds® 2

Method of choice when, for example, enumerating 3-manifolds

!Matveev, Algorithmic Topology and Classification of 3-manifolds, 2003
2Kauffmann and Lins, Computing Turaev-Viro inv. for 3-manifolds, 1991



The Turaev-Viro invariant with parameters r and ¢ is a function
TV, : M ->Q[(]nR

where

M = set of triangulated 3-manifolds (connected, closed)

C:ei”/; ,qgeZ co-prime; r>3; 0<qg<2r

Can be computed via purely combinatorial formulae.



state-sum model

M e M triangulated 3-manifold
V, E, F, T its set of vertices, edges, triangles, and tetrahedra
p:E—>{0,1,...,r—2} edge colouring satisfying the following
conditions at all triangles t of M:

“ o(ex) Vitjtk+i
0 mod2 and <2r-4

o, pler) +p(e)
> o(ei)

" v

€3

Call the set of such admissible colourings Adm (M, r)

For each ¢ € Adm(M, r), edge e € E, triangle t € F, and
tetrahedron A € T we define weights |e|,, [t|,, and |A[, in
Q[¢] only depending on ¢ (and r and q)

W) = % (“'e'@‘JJF""MIZT'A'W)

weAdm(M,r) \e<E
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r =3 (colours 0, 1) € P:

r =4 (colours 0, 1, 2) € #P-hard>:

3Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf
invariant, 2004.
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3Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf
invariant, 2004.



The treewidth of a graph measures how “treelike” a graph is
(trees have treewidth 1)

The treewidth of a triangulated manifold M is the treewidth of
its dual graph

Low treewidth = can arrange tetrahedra of M in a tree with
few tetrahedra grouped together per node of the tree (= thin
tree decomposition)

1,2,4===2,3 43 4,53 5, 6= 6,7

2,3,8

leaf nodes
&lg / caf nodes

Suitable for dynamic programming



Idea:

Given a triangulation, compute a tree decomposition with few
tetrahedra per node (if possible)

Enumerate admissible colourings and weights from the leave
nodes up

Grouping partial colourings together wherever they look the
same at the current node



Given a triangulated 3-manifold M with n tetrahedra, and a tree
decomposition of M with largest node of size k, we can compute
TV, q in

O(n-(r—1)6k-k2-|ogr).

Running time is of type g(k) x poly(n). In the literature such
an algorithm is referred to as fixed parameter tractable (FPT)*
in k (“treewidth”)

Common for FPT algorithms is a very bad parameter function
g : N — N (tower of exponentials)

Here: g(k)=(r-1)%%.k%.logr VS. (r—1)Il

This is why we implemented the algorithm (also very rare for
FPT algorithms)

*Downey, Fellows, Parameterized complexity, Springer



Algorithm |: treewidth
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works for all parameters r and ¢

faster than naive enumeration

NOT GOOD:

properties of triangulation, not manifold, determine running
time: “every manifold admits a triangulation with arbitrarily
high treewidth’

exact treewidth might be difficult to determine

algorithm requires large amounts of memory

BETTER:

Use parameter which is also a topological invariant

Easy to compute, even if large
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®Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf
invariant, 2004.
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Let ¢ € Adm(M,4) and let g be the reduction of ¢ (i.e., all colors
mod 2). Then
Ml = (~1)*(2v/2)X%0),

where o denotes the number of octagons in S,.



Algorithm II: 5,(M,Z,)

Lemma (Maria, S. 2016)

Let ¢ € Adm(M,4) and let g be the reduction of ¢ (i.e., all colors
mod 2). Then
M, = (~1)* (£v/2)X(S0),

where o denotes the number of octagons in S.

Proof (sketch):
e N ™ o
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M 1-vertex, n-tetrahedra triangulated 3-manifold with first Betti
number 1(M,Zy). Then there exists an algorithm to compute
TV4,q(M) with running time

0(2,31(/\/’722)”3)

in O(n%) memory and with O(2°*(M-72) cyclotomic field
operations.

Practical improvements:

‘ New algo. ‘ Treewidth algo.® ‘ Z-hom. in Regina ‘

<11 tet. census ‘ 10.96 sec. ‘ 498 sec. ‘ 7.72 sec. ‘

Theoretical improvements: Distinguishes roughly twice as many
manifolds as Z-homology on its own

8Burton, Maria, S., Algorithms and complexity for Turaev-Viro inv’s., 2015



Algorithm I1: 5,(M,Z,)
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Thank you

Benjamin A. Burton, Clément Maria, Jonathan Spreer, Algorithms
and complexity for Turaev-Viro invariants. Automata, Languages,
and Programming: 42nd International Colloquium, ICALP 2015,
Kyoto. Proceedings, Part 1, pg. 281-293. arXiv:1503.04099.

Clément Maria, Jonathan Spreer, A polynomial time algorithm to
compute quantum invariants of 3-manifolds with bounded first Betti
number. Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pg. 2721-2732. arXiv:1607.02218.
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