
Telling 3-manifolds apart: new algorithms

to compute Turaev-Viro invariants

Jonathan Spreer (Freie Universität Berlin)

Topology and Computer, Osaka, October 21, 2017



Motivation
▸ This talk: study of manifolds up to (PL-)homeomorphism

manifolds ↔ triangulated manifolds (simplicial?)
▸

▸ combinatorial arguments / discrete methods prove geometric
and topological problems

▸ Fundamental task: distinguishing between manifolds, i.e.,
given triangulations M and N, is M /≅ N?



Motivation

▸ This talk: study of manifolds up to (PL-)homeomorphism

manifolds ↔ triangulated manifolds (simplicial?)

▸

▸ combinatorial arguments / discrete methods prove geometric
and topological problems

▸ Fundamental task: distinguishing between manifolds, i.e.,
given triangulations M and N, is M /≅ N?



Motivation

▸ This talk: study of manifolds up to (PL-)homeomorphism

manifolds ↔ triangulated manifolds (simplicial?)

▸

▸ combinatorial arguments / discrete methods prove geometric
and topological problems

▸ Fundamental task: distinguishing between manifolds, i.e.,
given triangulations M and N, is M /≅ N?



Motivation

▸ Can we distinguish between manifolds?
▸ Dimension 1: 3
▸ Dimension 2: 3
▸ Dimension 3: Yes in theory. No in general in practice.
▸ Dimension ≥ 4: No.

▸ I.e., its trivial, extremely di�cult, or impossible to distinguish
between manifolds.

▸ Partial solution: topological invariants, properties of a
manifold which do not change under continuous deformation

▸ Turaev-Viro invariants: particularly powerful family of
topological invariants for 3-manifolds1 2

▸ Method of choice when, for example, enumerating 3-manifolds

1Matveev, Algorithmic Topology and Classi�cation of 3-manifolds, 2003
2Kau�mann and Lins, Computing Turaev-Viro inv. for 3-manifolds, 1991



Turaev-Viro invariants

The Turaev-Viro invariant with parameters r and q is a function

TVr ,q ∶ M → Q[ζ] ∩R

where

▸ M = set of triangulated 3-manifolds (connected, closed)

▸ ζ = e iπq/r ; r ,q ∈ Z co-prime; r ≥ 3; 0 < q < 2r

▸ Can be computed via purely combinatorial formulae.



Turaev-Viro invariants � state-sum model

▸ M ∈ M triangulated 3-manifold

▸ V , E , F , T its set of vertices, edges, triangles, and tetrahedra

▸ ϕ ∶ E → {0,1, . . . , r − 2} edge colouring satisfying the following
conditions at all triangles t of M:

▸

e1

e2

e3

t
ϕ(ei) + ϕ(ej) ≥ ϕ(ek) ∀i ≠ j ≠ k ≠ i

∑ϕ(ei) ≡ 0 mod 2 and ≤ 2r − 4

▸ Call the set of such admissible colourings Adm(M, r)
▸ For each ϕ ∈ Adm(M, r), edge e ∈ E , triangle t ∈ F , and
tetrahedron ∆ ∈ T we de�ne weights ∣e∣ϕ, ∣t ∣ϕ, and ∣∆∣ϕ in
Q[ζ] only depending on ϕ (and r and q)

▸ TVr ,q(M) = ∑
ϕ∈Adm(M,r)

(∏
e∈E

∣e∣ϕ ⋅ ∏
t∈F

∣t ∣ϕ ⋅ ∏
∆∈T

∣∆∣ϕ)



Turaev-Viro invariants � state-sum model

▸ M ∈ M triangulated 3-manifold

▸ V , E , F , T its set of vertices, edges, triangles, and tetrahedra

▸ ϕ ∶ E → {0,1, . . . , r − 2} edge colouring satisfying the following
conditions at all triangles t of M:

▸

e1

e2

e3

t
ϕ(ei) + ϕ(ej) ≥ ϕ(ek) ∀i ≠ j ≠ k ≠ i

∑ϕ(ei) ≡ 0 mod 2 and ≤ 2r − 4

▸ Call the set of such admissible colourings Adm(M, r)
▸ For each ϕ ∈ Adm(M, r), edge e ∈ E , triangle t ∈ F , and
tetrahedron ∆ ∈ T we de�ne weights ∣e∣ϕ, ∣t ∣ϕ, and ∣∆∣ϕ in
Q[ζ] only depending on ϕ (and r and q)

▸ TVr ,q(M) = ∑
ϕ∈Adm(M,r)

(∏
e∈E

∣e∣ϕ ⋅ ∏
t∈F

∣t ∣ϕ ⋅ ∏
∆∈T

∣∆∣ϕ)



Turaev-Viro invariants � state-sum model

▸ M ∈ M triangulated 3-manifold

▸ V , E , F , T its set of vertices, edges, triangles, and tetrahedra

▸ ϕ ∶ E → {0,1, . . . , r − 2} edge colouring satisfying the following
conditions at all triangles t of M:

▸

e1

e2

e3

t
ϕ(ei) + ϕ(ej) ≥ ϕ(ek) ∀i ≠ j ≠ k ≠ i

∑ϕ(ei) ≡ 0 mod 2 and ≤ 2r − 4

▸ Call the set of such admissible colourings Adm(M, r)
▸ For each ϕ ∈ Adm(M, r), edge e ∈ E , triangle t ∈ F , and
tetrahedron ∆ ∈ T we de�ne weights ∣e∣ϕ, ∣t ∣ϕ, and ∣∆∣ϕ in
Q[ζ] only depending on ϕ (and r and q)

▸ TVr ,q(M) = ∑
ϕ∈Adm(M,r)

(∏
e∈E

∣e∣ϕ ⋅ ∏
t∈F

∣t ∣ϕ ⋅ ∏
∆∈T

∣∆∣ϕ)



Turaev-Viro invariants � state-sum model

▸ M ∈ M triangulated 3-manifold

▸ V , E , F , T its set of vertices, edges, triangles, and tetrahedra

▸ ϕ ∶ E → {0,1, . . . , r − 2} edge colouring satisfying the following
conditions at all triangles t of M:

▸

e1

e2

e3

t
ϕ(ei) + ϕ(ej) ≥ ϕ(ek) ∀i ≠ j ≠ k ≠ i

∑ϕ(ei) ≡ 0 mod 2 and ≤ 2r − 4

▸ Call the set of such admissible colourings Adm(M, r)
▸ For each ϕ ∈ Adm(M, r), edge e ∈ E , triangle t ∈ F , and
tetrahedron ∆ ∈ T we de�ne weights ∣e∣ϕ, ∣t ∣ϕ, and ∣∆∣ϕ in
Q[ζ] only depending on ϕ (and r and q)

▸ TVr ,q(M) = ∑
ϕ∈Adm(M,r)

(∏
e∈E

∣e∣ϕ ⋅ ∏
t∈F

∣t ∣ϕ ⋅ ∏
∆∈T

∣∆∣ϕ)



An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

0

0

0

1

1

0

r = 4 (colours 0, 1, 2) ∈ #P-hard3:

3Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.



An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

0

0

0

1

1

0

r = 4 (colours 0, 1, 2) ∈ #P-hard3:

0

0

0

1

1

0

1

1

2

2

2

0

3Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.



Algorithm I: treewidth

▸ The treewidth of a graph measures how �treelike� a graph is
(trees have treewidth 1)

▸ The treewidth of a triangulated manifold M is the treewidth of
its dual graph

▸ Low treewidth ⇒ can arrange tetrahedra of M in a tree with
few tetrahedra grouped together per node of the tree (⇒ thin
tree decomposition)

1

2 3

6 7

54

8 9

1, 2, 4 2, 3, 4 3, 4, 5 3, 5, 6 6, 7

2, 3, 8

8, 9

leaf nodes

▸ Suitable for dynamic programming



Algorithm I: treewidth

Idea:

▸ Given a triangulation, compute a tree decomposition with few
tetrahedra per node (if possible)

▸ Enumerate admissible colourings and weights from the leave
nodes up

▸ Grouping partial colourings together wherever they look the
same at the current node



Algorithm I: treewidth

Theorem (Burton, Maria, S. 2015)

Given a triangulated 3-manifold M with n tetrahedra, and a tree

decomposition of M with largest node of size k, we can compute

TVr ,q in

O (n ⋅ (r − 1)6k ⋅ k2 ⋅ log r) .

▸ Running time is of type g(k) × poly(n). In the literature such
an algorithm is referred to as �xed parameter tractable (FPT)4

in k (�treewidth�)

▸ Common for FPT algorithms is a very bad parameter function
g ∶ N→ N (tower of exponentials)

▸ Here: g(k) = (r − 1)6k ⋅ k2 ⋅ log r vs. (r − 1)∣E ∣

▸ This is why we implemented the algorithm (also very rare for
FPT algorithms)

4Downey, Fellows, Parameterized complexity, Springer



Algorithm I: treewidth

Backtracking (seconds)

F
P

T
 (

se
co

nd
s)

0.01 0.1 1 10 100

0.
01

0.
1

1
10

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

treewidth 1 (2143 points)
treewidth 2 (10902 points)
treewidth 3 (14 points)
treewidth 4 (337 points)
treewidth 5 (1 point)
equal times

Running times for TV7,1 for the minimal 11-tetrahedra
triangulations of closed prime orientable 3-manifolds.



Observations

GOOD:

▸ works for all parameters r and q

▸ faster than naive enumeration

NOT GOOD:

▸ properties of triangulation, not manifold, determine running
time: �every manifold admits a triangulation with arbitrarily

high treewidth�

▸ exact treewidth might be di�cult to determine

▸ algorithm requires large amounts of memory

BETTER:

▸ Use parameter which is also a topological invariant

▸ Easy to compute, even if large



An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

0

0

0

1

1

0

r = 4 (colours 0, 1, 2) ∈ #P-hard5:

0

0

0

1

1

0

1

1

2

2

2

0

5Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.



An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

r = 4 (colours 0, 1, 2) ∈ #P-hard5:

0

0

0

1

1

0

1

1

2

2

2

0

5Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.



An alternative view on admissible colourings

r = 3 (colours 0, 1) ∈ P:

r = 4 (colours 0, 1, 2) ∈ #P-hard5:

5Kirby, Melvin, Local surgery formulas for quantum invariants and the Arf

invariant, 2004.



An alternative view on admissible colourings



An alternative view on admissible colourings



Algorithm II: β1(M,Z2)

Lemma (Maria, S. 2016)

Let ϕ ∈ Adm(M,4) and let ϕ0 be the reduction of ϕ (i.e., all colors

mod 2). Then
∣M ∣ϕ = (−1)α(±

√
2)χ(Sϕ0),

where α denotes the number of octagons in Sϕ.

Proof (sketch):



Algorithm II: β1(M,Z2)

Lemma (Maria, S. 2016)

Let ϕ ∈ Adm(M,4) and let ϕ0 be the reduction of ϕ (i.e., all colors

mod 2). Then
∣M ∣ϕ = (−1)α(±

√
2)χ(Sϕ0),

where α denotes the number of octagons in Sϕ.

Proof (sketch):



Algorithm II: β1(M,Z2)

Lemma (Maria, S. 2016)

Let ϕ ∈ Adm(M,4) and let ϕ0 be the reduction of ϕ (i.e., all colors

mod 2). Then
∣M ∣ϕ = (−1)α(±

√
2)χ(Sϕ0),

where α denotes the number of octagons in Sϕ.

Proof (sketch):



Algorithm II: β1(M,Z2)
Theorem (Maria, S. 2017)

M 1-vertex, n-tetrahedra triangulated 3-manifold with �rst Betti

number β1(M,Z2). Then there exists an algorithm to compute

TV4,q(M) with running time

O(2β1(M,Z2)n3)

in O(n2) memory and with O(2β1(M,Z2)) cyclotomic �eld

operations.

Practical improvements:

New algo. Treewidth algo.6 Z-hom. in Regina

≤ 11 tet. census 10.96 sec. 498 sec. 7.72 sec.

Theoretical improvements: Distinguishes roughly twice as many
manifolds as Z-homology on its own

6Burton, Maria, S., Algorithms and complexity for Turaev-Viro inv's., 2015



Algorithm II: β1(M,Z2)

Treewidth−FPT (seconds)

β 1
−

F
P

T
 (

se
co

nd
s)

0.001 0.003 0.01 0.03 0.1 0.3

0.
00

00
3

0.
00

01
0.

00
03

0.
00

1
0.

00
3

0.
01

●

●●
●

●

●
●

●
●

●●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●
● ●

●
●

●●
●● ●●

●●

●

●

●

● ●

●

●

●● ●●
●

●

●

●

●
●

●

●

●●

●
●

●●●

●

● ●

●

● ●●●
● ●●● ●●

●

●

●
●

●
●● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●● ●
●

●● ●●●●

●● ●●● ●● ●●●
●● ●●●

● ● ●●●●●● ●●●● ●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●●●

● ●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●●

●

●●

●

●
●

●
●

●
●

●●

●

●

●

●
●

●

● ●
● ●

●
●●●

●●

●●● ●
●

● ●●●
●

●

●

●

●●

●

● ● ●● ●●● ● ●●● ●●●

●
●● ●●

●

●● ● ●●●● ●● ●●●
● ●●

●●● ●●

●

●●
●●

● ●
●

●

●
●●●

●●

●● ●
●

●●

● ● ●●●
●

●

●

●

● ●

●
●

●●●● ●

●

●

● ●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

● ●

●
●

● ●

●

●●

●
●●●

●

●
●● ●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●
● ●

●

●
● ●●

● ●●
●●

●

● ●●
●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●
●

●●

●
● ●●●

●

●

●

●
● ●●

●
●

●

●

●

● ●
●

●

●

●

●

●
●● ●●

●
●● ●●

●

●
●

● ●
●

●●
●

●●
●

●
●

●

●

●

●
●

●●
● ●

●●

●

● ●

●
●● ●

●

● ●

● ●●●

●

● ● ●●● ● ●● ● ●● ●●●
●

● ●● ●

●

●●
●●

●●●● ● ●
●● ●●

●●●●

●

●
● ●●

●●

● ●●
●● ●● ●● ●●● ● ● ●● ●

●
●

●

●●

●

●

●●

● ● ●● ●●
●

●
●

● ●

●●
●

● ●
●

● ●
●

●

●●
●● ●●

●● ●● ● ●

●●

●

●●

●

● ●

● ● ● ● ●
●

●

●
●

●
● ●● ●●●● ●

●

● ●

● ●● ●●● ●● ●● ● ● ●

●●

●● ●

●

● ●

●●●

●

●

●

●
●

●

●

●

●

●●●● ●● ● ●● ●
●●● ●●●

●

● ●
●

●●
●

●

●
●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

● ●

●●

●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●●●
●

●

●

● ●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●
●

●
● ●

●●●

●

●● ●

●

●
●

●

●

●● ●

●●
●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

● ●

●

●
●

●

●

●●

●

●

●●

●●
● ●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
● ●

●

● ●

●

● ●
●

●

●
●

●

●●
● ●

●●
● ●

●

●
●

●

●●

●

●
●

●

●
●

●

●

● ●
●● ●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

● ●● ●●●

●●

●●

●●●●

●●

●

●

●● ●●● ● ●●●●

●● ●●

●●

●
●

●

●
●

● ●●● ●
●

●● ●● ●
●

●
●

● ●

●● ●●

●● ●

●● ● ● ●●● ● ●●

●

●● ● ●
●

●
●

● ●● ●
●●

● ●

●

●● ●● ●

●

●

●

●

●●● ●

●● ●●● ●●●● ● ●
●●

●
● ●●

●

●●

●

●● ●

●● ●● ● ●

●●

●● ●●●●

●

● ● ●● ●●●
●

●

●●

●

●●

●

●
●

●●
●

● ●

●●●●
● ● ●●
●

● ● ●

●●
● ●

● ●

●●

●

●

● ● ●● ● ●●● ●

● ●●

● ●

●
●

● ●●● ●

●

●●
●

●● ●●●
●

●
●

●●

●

●
● ●● ●● ●● ●● ●●

●

●●

●

●

●●● ● ●●

●

●● ●
●

●●●● ● ●● ●

●

●
●●

●● ●●● ● ●●● ●●●●●
●

● ●
●● ● ●● ● ● ●● ●●●

●● ●●●● ●

●

●●

●

●● ●●

●●● ●●● ●●●●

●

●●●● ● ● ● ●●●●
●● ●● ● ●

●

●●●●
●●

●
●● ● ●● ●●●●● ●

●●

●●●●
●● ●

●

●
●● ●● ●● ●

●●

●

● ●

●●

●●

● ● ●● ●●

●
●

●
●●

●●
●●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

● ●

●●●

●●

●● ●●

●●

●●●●

● ●

●●

●

● ●

●●●
●● ●●

●●

●

● ● ●●

●

● ●

●

●

●

●●● ●● ● ●

●

●

●

●●

●
●

● ● ●
●

● ●
●●● ● ● ● ●●

●

● ●

●

● ●●

●

● ●
● ●● ● ●

●
●

● ●● ●

●

● ●● ●●
●● ●● ●● ●

● ●● ●●● ● ● ● ●
● ●● ●●● ●

●

●● ● ●●
●●●● ● ●

●

● ●●●
●
●

●●● ● ●● ●●●●● ●●
●

● ●●● ●
●●

●
●

●● ●●●●

●●

●●
●●

●

●
●

●
●

●
●●●●

●
●● ●

●
●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●
●

●● ●

● ●
●

●

●●●

●
●

●
●

●

● ●

● ●●

●

●

●

●
●

●
●

● ●

● ●● ● ●

●

●●

● ●

●●●●
●

●

● ●●

● ●

●● ●●●● ● ●●● ● ●●
●

● ●●●

●
●

● ●
● ●●● ●●● ●

●

●

●
●

●●● ●●●

●

● ●●

●

●
●●

●●

●●●●

●●

●●

●●

●● ● ● ●● ●●● ●●

●

● ●●●

●● ●●

●
●

●

●

●
●●●

●

● ●●

●

●

●

●

●

●

● ● ●

●● ●● ●●
●● ●

● ●
●

●●●● ●●
●● ● ● ●● ●

●
●●

●

●

●

● ●●● ●●● ●●
●

●
● ●● ●

●

●●● ●● ●●● ● ●●● ●● ●●● ●●● ●●●
●●

●●

●●

●●

●

●

●●● ●

●

●

●

●●
●

●

●●

● ●

●●

● ●

●●

●●● ●

●●

●

●

●

●●●

●

●

●●● ● ●●● ●●● ●●●●●
●

●● ●●● ● ●●● ●●
●

● ●●● ●●

●●

●●

●●

●●

●

●

●

●●

●●● ●●● ●
●

● ●● ●
●●● ●●● ●● ●

●● ●●

●

● ● ●●

●

●●● ● ●●●
●

●

●

●
●●

●●●

●

● ●

●

●●

●

●● ●●● ●

●

●

●

●

●

●●

●

● ●●● ●● ●

●●
●● ● ●●

●

●
● ●

●●

●● ●●●
● ● ●●

●● ●
●

●
● ●●●

● ●●●●●●●
●●●

● ● ●●
●● ●

● ●●

●●

●

●

●●

●
●●

●●●● ●● ●●● ●●● ●● ● ● ●●●
●●

●● ●● ●
●●● ●

●
● ●●●

●

● ●●●
● ● ● ●●●●● ● ● ●● ●●

●

●●●● ●● ●●● ●●● ● ●●● ●●

●

● ●● ●●● ●●
● ● ●●

●●●●

●

●

●●● ●
●

●● ●●● ●● ●● ● ●● ●●●●
●

●●● ● ●●●● ●●●● ●●● ●● ●

●

●● ●●●●● ●●● ● ●●● ●●●
●●

●●

●●

●

● ●●

●●

●●● ●

●

●●

●

●

●

●

●

● ●●

●
●

●●

●

●
● ●●

●

●●●●
●●

●● ●

●

● ●

●●

●●● ● ●●

●●

●●●

●

● ●

●●

● ●●● ●●● ●●● ●●●●

●●● ●

● ●●● ●● ●●● ● ● ●●● ●●
● ●●●● ●● ●

●

● ●●●● ●●● ●●●
●

● ● ●●

●

●● ●

● ●● ● ● ●●● ●● ●

●●●● ●● ●●● ●●●● ●●● ●●
●

●●

● ●

●●
●●

●●

●
●

●●

●

●

● ●

●●

●● ●●●

●●

●●

●●

●●● ●

●●

●●● ●● ●

●●

● ●

●

●

● ●●●

● ●●●

●●

● ●

●● ● ●

● ●

●●●●

● ●

●●

●

●

● ●

●●● ●●● ● ●●● ●●● ●●● ● ●●

●

●●

●●

●

●

●

●
●

●●

●

●●

●

●
●● ●

●

●
●●

●●●●

●

●●●

●

●● ● ●● ●●●● ●● ●● ●

●

●
●●

● ●

●

● ●●

●
●●

●

●

●●

●
●

●
●

●
●

●

●

●● ●● ●
●

● ●●
● ●● ●

●●
●

●

●

●
●●

●

●

●
●●

●● ●●

●

● ●● ●

●

●● ● ●● ●● ●● ●●●●
●● ●●●● ●

●

●●● ●●● ●● ●
●

●●●

●

●
●

●

●● ●●●

●

●

●●● ●●

●

●

●●●

●

●
●● ● ●● ●●● ●● ● ●● ●●● ●●●●

●

●

●

●● ●●

●

●●●●● ●

●

●

●

●
●

●

● ●
●

●
●●

●●●● ●● ●● ●● ●● ●●●● ● ●● ●●● ● ●● ●●● ●
●

●

●

●●

●

●

●

●

●●
●● ● ●●●● ●●●

●

●

●

●●●

●
● ● ●●● ● ●●

●
●●

●
●● ●● ●●

●
●●

●● ●●●
●

●

●

●
● ● ●● ●

●
● ●●●●

● ● ●● ●●● ●●
● ●

●
●

●
●

● ●●●●
●

● ●

●

●●● ●

●● ●

●

●●●● ●● ●● ●
●●●● ● ●

●

●● ● ●●●
●

●
●● ●● ●● ●●

●

● ●● ●● ●

●

● ● ●●● ●●●● ● ●●● ●●● ●

●

● ●●

●●●

●

● ●
● ●●

●
● ●●●

●

●

● ●
●

● ●●● ● ●● ●● ●●● ●●●●● ●●● ●● ●●●●

●

●●

●

● ● ●●●

●

●●●● ●

●● ●
●●●● ●●●●

● ●●

●●● ●●●
●

● ●●●
●

●●
●

●● ●

●

● ● ● ●●

●

●●● ●●

●
●●● ●●● ● ●●● ●●

●
● ● ●● ●●● ●● ●●●● ●●●

●

● ●●● ●●● ● ●●●● ● ●● ●● ● ●
●

● ●●●
●

●●● ●●

●
●●● ●

●

●

●
● ●●● ●

●●●● ●

●

●● ●●●
●● ●●●● ● ●● ●

●●● ●● ● ●●● ●●● ●●

●

●

●

●

●●● ●●● ●● ●
●● ●●●●● ● ●● ● ●●● ●●● ●●●●

●●

●

●●● ●● ●●●● ●●

●

●●● ●● ● ●● ●●● ●● ●●● ●●●

●

●● ●● ●

●

●
●● ●●● ●●●

●

●

● ●●●● ● ●● ● ●● ●●● ●●● ●

●

● ●●●●● ●●● ●●● ●● ●● ●

●

●●●● ●● ● ●●●● ●● ● ●

●

●

●

●

●

●●●●● ● ●● ●●● ●●● ●

●

● ●●● ●●● ●● ● ●
●
●

● ●●● ●

● ●●●●

●

●●● ●●●●●● ●●●●●

●

●● ●

●●

● ●●

●●

●●● ●●●

●
●

●
●

●●
●

●●

● ●

●

● ●● ● ● ●

●●

●●
●

● ●● ●●● ●●
●●●● ●

●

●●

●
● ●

●

●●

● ● ●●● ●
●

●

●● ●●● ●
● ●●●

●
●●●

●●
●●

●

●

●

●

● ●

●●
●●● ●

●●

●●

●●

●●● ●●●

●

●

●
●

● ●●

●

●

●

● ●

●
●● ●●

● ●●● ●● ●●●●● ●●●●● ● ●●●● ●

●

● ●●● ●●●●● ●●●● ●●●

●

●● ●

●

● ●

●

●

●

● ●●●● ● ●●● ●●● ● ●●●●

●

●
●
●● ●●● ●● ● ●●●

●

●●●●● ●●● ●●●●

● ●●

●

●
● ● ● ●● ●●● ● ●●● ●●● ●●●

●

● ●●●
●●● ● ●● ●●●

●

● ●●●● ● ●●● ●●● ● ●●●●●● ●●● ●●● ●● ●●●● ●
● ●

●● ●● ● ●

●

●● ●●● ●●● ● ●●● ●●
● ●

●●● ●●● ●●● ●
●

●●

●

●●●
●●

●●

●●

●●● ●

●●

●●● ●●● ●

●

●

● ●

●

●

●
●

●● ● ●●

●●

●●●● ●●

●●

● ●●● ●●● ●●● ●

●

●●●●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●●
●●● ●

●●

● ●

●

●
●●

● ●●● ●●●●●●
●●

●●

●●

●● ●●

●

●● ● ●
●

● ●●● ● ●●● ● ●●●●●
● ●

●

●

● ●●

●

● ● ●●●●
●●

●●

●●

●●

●

●

●●

●●

●●● ●
●

●
●●

●●

● ● ●●

●●

●
●● ●

●●

●●

●

●

● ● ●●

●●

●●● ●
●●

●●

●●

● ● ●●

●●

● ● ●
●

●

●

●

●

●●● ● ●●●● ●● ●●●● ● ●●

●

● ●●●● ●●● ●●● ●●●

● ● ●

●

●● ●● ●●●● ● ●● ●● ●●●●●● ●●

●

● ●

●●

●

●

●

●

●●
●●

● ●

●●
● ●

●

● ●● ●● ●● ●●

●● ●● ●● ●● ● ●
●

●

●

●

●
●
● ●●

●●

●

●

●
●
●● ●

● ●

●●●
● ●

●
●●

●

●
●

●
● ●●

●

●●
●

●
● ●

●
●

●
●

● ●
●● ●●

●
●

●

●

●

●● ●● ●● ●

●

● ●
●● ●● ●

●

●
●●● ●

●

●

●●● ● ● ● ●

●

●●● ●●●● ●●● ●●
● ●●● ●●

●●
●●

●●
●

●
●

●●

●

●● ●●● ●●
●

●
●

●

●
●● ●

●

●

● ● ●●
●

●

●● ● ●●

●

● ●●●● ●
● ●

●● ●●
●

●●

●
● ●●

● ●
●●●

●
●

● ● ●

●

●●●●● ●●

●

●

●

●●

●
●

●

●

●●
●● ●●●●

●● ●● ●

●

● ●●●● ●
●● ●● ●

●●● ●
●

●●

●

●
●

●● ●
● ●

●

● ●

●

●
● ● ● ●● ● ● ●●●

●
●

● ●
●

●● ● ● ●●
●●●●

●●
●

●

●

●

●●● ●●

●

●●● ●●●●
●●

●●
●● ●●● ●●● ●●

●

●
●
●

●
●● ● ●●● ●

●
●

●

●

● ●●●

●

●
● ● ●● ●● ●● ●

●

●
●

●
●●

●

●●
● ●●

●
●
●

● ●● ●

●
●

● ●
● ●

●
●●●●

●

●

● ●

●

● ●●
●

●● ● ●● ●
● ●

● ●
●

●

●

●

● ●● ●
●

● ●

●

●●● ●●●●
●● ● ●● ●●● ● ●●● ●

●

●
●

●● ●● ●●● ●●● ● ●

●

● ●●● ●●●●● ●● ●● ●●●●
●●

●●
●

●

●●●●●● ●● ●●●● ●● ●
●● ●●

●

● ●●● ● ●●● ●●●●●●●●
●●●

●

●●
● ●

●

●
●●● ●

●

●

●

●● ●● ● ● ●●●
● ●

●

●

●

●

●●

●

●● ●●●

●

● ● ●
●●

● ●

●

●● ●●●
●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●● ● ●●●● ●●●●

●

● ●● ●● ●● ●● ●● ●● ●● ●● ●

●

● ● ●●

● ● ●●

● ●●●

●●● ●

●

● ●● ●●

●

● ●● ● ●● ●●● ●● ●● ●●●●●

●

●●

●

●

● ● ●●● ●● ●

● ●
● ●● ●

●● ●●●
●

●
●

●
● ● ●●● ●

●

●

●●●● ●●● ●●● ●● ●●● ●● ● ●● ●● ● ●●
●● ●●●● ● ●

●●●
●

●
●

●

● ● ●●● ●
●

● ●●●● ● ●
●

●

● ●
● ●

●

●
●

●
●

●
●

●
●

●

● ●●●● ●●● ●●● ●● ●●● ● ●● ●
●●●● ●●

●● ●

●

●●●●

●
●●
●

●
●●●● ●

●
●● ●● ●

●

●●
●

●●● ●●

● ●●●●●
● ●

●●●● ●● ●●● ●
●●

● ●
●● ●

●
●

● ●● ● ●●●● ●● ●● ●●●

●

●
●

●

●

●● ●
●●● ●● ● ● ●●●● ● ●●

●●
●●

●●
●

● ●
●

●
●

●

● ●●●●●
●●

●● ●● ●● ●
●●● ● ●● ● ●

●●● ● ●● ●●● ●●●● ●● ●

●

● ●●●●

●

● ● ●●● ●●●● ● ●● ●● ● ●
●

●

●● ● ● ●●●

●

●●●●

● ●
● ●●● ●● ●●●● ● ●● ●

●

●

●●● ●

● ●● ●●● ●●● ●● ●● ●●● ●●● ● ● ●● ●●
● ●●

●
●

●

● ● ●● ● ●●● ● ●●● ●

●

● ● ●●● ● ●● ● ●●●● ●●● ● ●●●● ●●
●

●●● ●●

● ● ●

●● ● ● ●● ●● ● ●

●

●●● ●●● ●●●

●

● ●●● ●● ●●●● ●●
●
●
●

●●●●

●

●● ●●● ● ●
●

●● ●● ●
●

● ●
●

●●●● ● ●● ● ●

●

●
●●● ●

●● ● ●● ● ● ●●● ●
●

● ●● ● ● ●●● ●

●

●●● ● ●●● ● ●●●●● ●●● ●●

●

●● ●●●● ●●●● ●●● ● ●●

●

● ●●● ●●●●●● ●●●● ●● ●

●● ●

●

●●● ●●● ●● ● ●●

●

●
●

●
●

●● ●● ● ●● ●●● ●
●

●

●

● ●● ●
● ●●●● ● ●●● ●● ● ●● ● ●●●● ● ●●●● ● ●● ●●● ●

●

●

● ●●● ●●●● ●● ●●●● ●
● ● ●●● ● ●●● ●● ●● ● ● ●●

●
●

●

●

● ● ●● ●●● ● ● ● ●● ●●● ●●● ●● ●●●●●● ●●●● ●●●●● ●●●

●

●● ●●●● ● ●●● ● ●●
●

●● ●●● ●●●●

●

● ●●●●

● ●●

●

● ● ●● ●● ●

●

● ●●●●●●●● ●● ●● ●● ●● ●●● ●●
●● ●●

●● ●

● ● ●●●●

●● ● ●
●

●

● ●● ●● ●●● ●●●● ● ● ●● ● ●

●

●
●●●● ●●● ● ●● ●●

●●● ● ● ●● ●
●● ●●● ●

●
●

●

●

●

● ●● ●●● ●

●●● ● ● ●● ●

●●● ● ● ●●

●

●

●●

●● ●

●

●● ● ●
●

●

● ●

●

●● ●

●

●● ●●

●
●

●
● ● ●●●● ●● ●●● ●● ● ●● ● ●● ●

●●
● ●●●●

●

●● ●●●

●

●●

●●●● ●●
● ● ●● ●●●●

●
● ●●● ●●●●

●
●●● ●●●

●●

●● ●

●

●●
● ●

●● ●● ● ●●●●●
● ● ●

●●

●

●

●

●

●

●

β1 = 1 (5632 points)
β1 = 2 (2043 points)
β1 = 3 (334 points)
β1 = 4 (19 points)
tw = 1 (2143 points)
tw = 2 (10902 points)
tw = 3 (14 points)
tw = 4 (337 points)
tw = 5 (1 point)
equal time

Running times for TV4,1 for the minimal 11-tetrahedra
triangulations of closed prime orientable 3-manifolds.



Thank you

Benjamin A. Burton, Clément Maria, Jonathan Spreer, Algorithms

and complexity for Turaev-Viro invariants. Automata, Languages,

and Programming: 42nd International Colloquium, ICALP 2015,

Kyoto. Proceedings, Part 1, pg. 281�293. arXiv:1503.04099.

Clément Maria, Jonathan Spreer, A polynomial time algorithm to

compute quantum invariants of 3-manifolds with bounded �rst Betti

number. Proceedings of the ACM-SIAM Symposium on Discrete

Algorithms (SODA 2017), pg. 2721�2732. arXiv:1607.02218.


