Cubical Ripser

- A calculator of the persistent homology of the cubical complex

2017/10/21

Meiji University Graduate School of Advanced Mathematical Sciences
Sudo Takeki(M1) and Ahara Kazushi

Motivation

• CREST ソフトマター記述言語の創造に向けた位相的データ解析理論 の構築

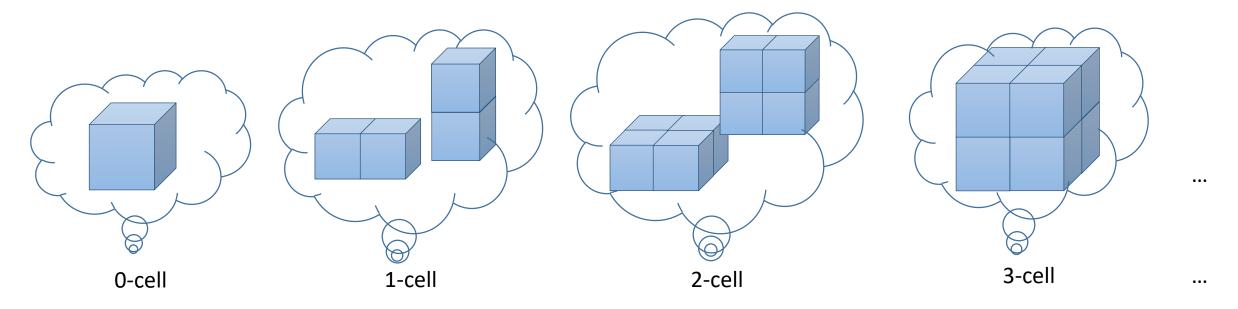
- DIPHA, PHAT, Perseus : calculators of the persistent homology
 - ➤ It takes time to calculate the persistent homology of huge amount of data.

So we need a new software to calculate more quickly.

Cubical complex

Simplicial complex is a set consisting of points, line segments and triangles.

Cubical complex is a set composed of squares or cubes.



Example of cubical complex

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,), [-1,

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,), [-1,

Dim 1: [0,

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,), [-1,

Dim 1: [0, 1)

3	2	2	3	1	-1	-1	-1	1
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,), [-1, 2)

Dim 1: [0, 1), [2,

		2						
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: [-3,), [-1, 2)

Dim 1: [0, 1), [2, 3), [3,), [3,)

		2						
2	2	0	3	3	1	1	1	1
2	3	0	-1	4	3	4	2	2
2	0	0	-1	-1	-1	0	-2	-2
2	1	-1	-2	1	0	0	-2	-3
1	1	-2	-2	1	-2	-2	-3	-3
1	1	-2	-2	-2	-2	-3	-3	-3

Dim 0: $[-3, \infty)$, [-1, 2)

Dim 1: [0, 1), [2, 3), [3, 4), [3, 4)

Ripser

- A software for computing the persistence barcodes in Vietoris-Rips complex
- Made by <u>Ulrich Bauer</u> in 2016
- The main feature
 - ➤ about 1000 lines of code in C++, no external dependencies
 - > support for coefficients in prime fields
 - >time- and memory-efficient

Open source (http://ripser.org)

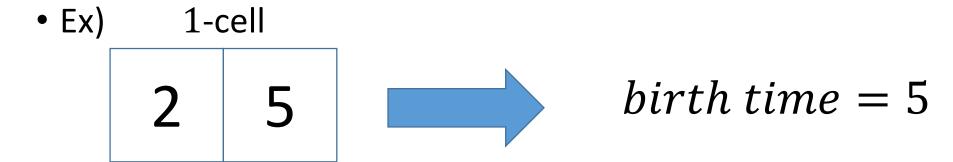
Cubical Ripser

- A software for computing persistence pairs in cubical complex (C++)
 - For both of two-dimensional and three-dimensional data, that is, gray-scale pixel(or voxel) data.

- Using Ripser's algorithm
 - >coface, pivot, compute pairs, assemble columns to reduce etc
 - ➤ Vietoris-Rips complex → cubical complex

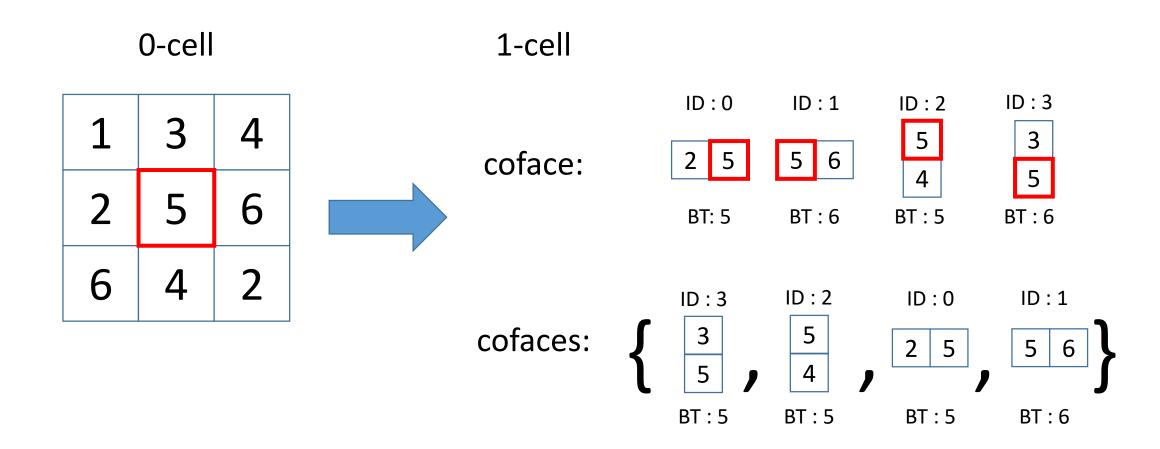
Coface

Each cell has an index(ID) and a birth time(BT).



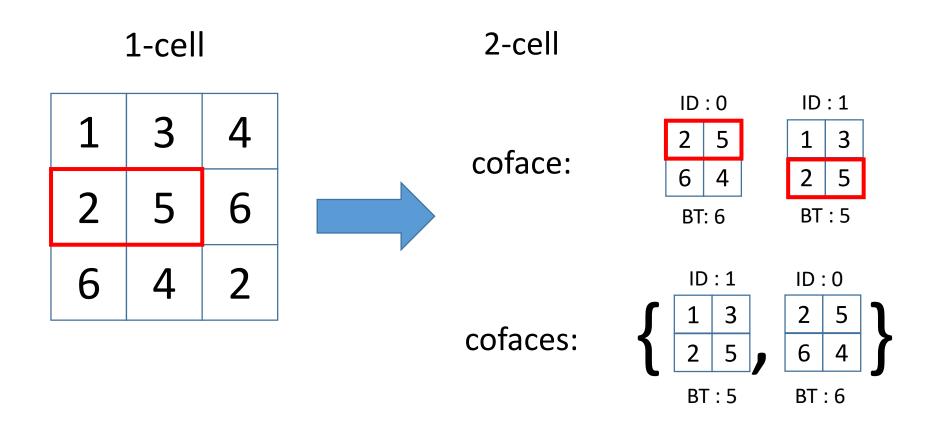
• For each d-cell σ , coface is defined by (d+1)-cell which includes σ and 'cofaces' is a list of the cofaces sorted in dictionary order of "smaller BT or greater ID".

Example of coface



Note: The BT of a coface is equal to or larger than that of the original.

Example of coface



Note: The BT of a coface is equal to or larger than that of the original.

Pivot (conventional)

For a boundary matrix $M \in \mathbb{Z}_2^{n \times m}$, we let M_j denote its j-th column, and $M_j^i \in \mathbb{Z}_2$ its entry in row i and column j. We set $pivot(M_j) \coloneqq \max(i=1,...,n|m_i=1)$

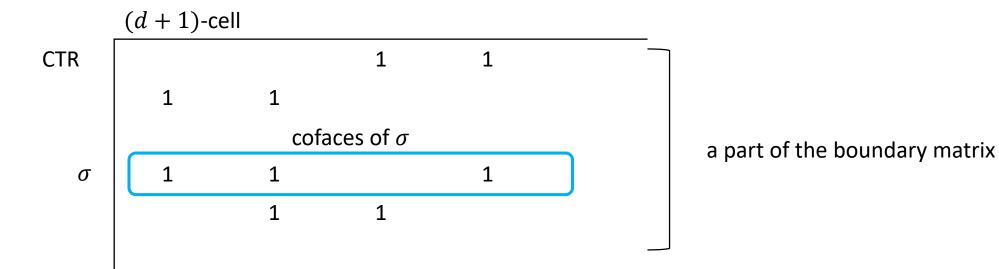
and call it the pivot index of that column.

Pivot and Compute pairs(CP)

Make <u>columns to reduce(CTR)</u>

 \hookrightarrow a list of d-cells (sorted in ascending order of BT)

 \leftrightarrow a list of generators of Z_d

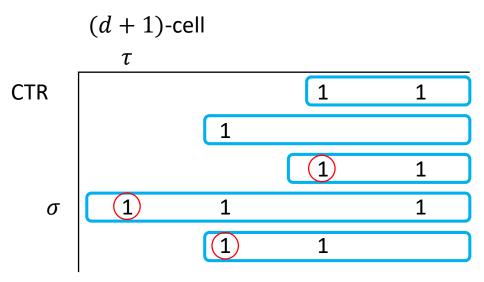


Columns are the list of all (d + 1)-cells in dictionary order of (BT, ID).

Pivot and Compute pairs

- Look at boundary matrix from the bottom row to the top row.
- I . If the first (leftmost) coface τ of σ isn't contained in the list of pivots, then add τ to the list of pivots.

If $(BT \ of \ \sigma) < (BT \ of \ \tau) \rightarrow [BT \ of \ \sigma, \ BT \ of \ \tau)$ is added to the list of persistence pairs(PP)



Red circles mean that the element is on the position of pivots.

Pivot and Compute pairs

 ${\rm I\hspace{-.1em}I}$. If the first coface τ of σ has been already included in the list of pivots, add the row σ' to the row σ and look for the first coface again

	(d+1)-0	cell		
		τ		
CTR			1	1
σ		1		
			1	1
	1	1		1
σ'		1	1	

 τ is the first coface and τ is the pivot of the row σ' .

Example of pivot and Compute pairs

	30		40	40	80	90				
	$ au_1$		$ au_3$	$ au_2$	$ au_4$	$ au_5$		\mathbb{Z}_2 -c	oefficie	ent
σ_1 (BT: 30)	1	1						+	0	1
$\sigma_2(\mathrm{BT:34})$			1			1		0	0	1
σ_3 (BT: 40)			1	1				1	1	0
σ_4 (BT: 80)					1	1				
σ_5 (BT: 90)						1				
	•					The coface of σ_2	has already b	peen pivot	(the cof	ace of σ_3)
	1						$\sigma_2 \leftarrow \sigma_2$	$\sigma_2 + \sigma_3$		
			$ au_3$	$ au_2$						
σ_2			1			1				
σ_3			1	1						
$\sigma_2 + \sigma_3$			0	1		1				
	$ au_2$ is the pivo	t→	ВТ ој	$f \sigma_2 =$	= 34	$< 40 = BT \ of \ \tau$	2			

 \rightarrow [34, 40) is PP

Assemble columns to reduce(ACTR)

• CTR(of (d + 1)-dim) \leftarrow {all (d + 1)-cells} - {all d-pivots}

```
computational procedure
                                 Read input data
                           Make CTR (a list of 0-cell)
                                 compute pairs
                                                                     Persistence pairs (0-dim)
            CTR(of 1-cell) \leftarrow (a list of 1-cells) - (pivots of 0-cell)
                                 compute pairs
                                                                     Persistence pairs (1-dim)
            CTR(of 2-cell) \leftarrow (a list of 2-cells) - (pivots of 1-cell)
```

Compare with other software

compare with DIPHA

➤ data size : 200*200*200

> the number of pairs: 39097

> calculation time (file out) :

```
$ time ./dipha cf.complex cf.diagram
real 3m44.192s
user 3m21.078s
sys 0m16.328s
```

DIPHA

```
$ time ./cubicalripser_3dim
the number of pairs : 39097
real 0m51.945s
user 0m46.312s
sys 0m2.281s
```

Cubical Ripser