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Figure 4.13. Robert Lang’s Oval Tessellation, 1999.



HWEEQIX/OFYVOBEEZRS

Mok oz,

BROBN KT AL P 2id?

1004E DB & #ET

R0 L eI 2| s &2 5

BEBLMLTLES2DN?

QEDORMIZENOINLRFE LD
-ERCDAIHVDOWES.

WEEDVD




Thurston proposed Geomtrization
Conjecture




BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 6, Number 3, May 1982

THREE DIMENSIONAL MANIFOLDS, KLEINIAN GROUPS
AND HYPERBOLIC GEOMETRY

BY WILLIAM P. THURSTON

1. A conjectural picture of 3-manifolds. A major thrust of mathematics in the
late 19th century, in which Poincaré had a large role, was the uniformization
theory for Riemann surfaces: that every conformal structure on a closed
oriented surface is represented by a Riemannian metric of constant curvature.
For the typical case of negative Euler characteristic (genus greater than 1) such
a metric gives a hyperbolic structure: any small neighborhood in the surface is
isometric to a neighborhood in the hyperbolic plane, and the surface itself is
the quotient of the hyperbolic plane by a discrete group of motions. The
exceptional cases, the sphere and the torus, have spherical and Eu
structures.




THREE DIMENSIONAL MANIFOLDS

FIGURE 4. Three o’clock sky.




Oval Tessellation




Mathematical Formulation



Origami

Origami paper

Origami



Fold line (JTY #8)

Mountain fold Valley fold



EFﬂﬁ \\

Crease pattern (.




>

Origami paper 1s a region R
in R’
RCR’




Mathematical Formulation

R C R*? :aregion

Origami paper
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fold line (FFy#)
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edge face

vertex (of degree 4)



One-vertex flat folding



One vertex folding



Flat foldable crease pattern




Even degree

If one vertex folding (R,G) is flat, then
the degree of the vertex is even.




Even degree




Mountain-Valley counting

(Maekawa-Justin)

M-V ==+2




Angles around a vertex

Kawasaki-Justin




Theorem (degree 4 flat folding)

The crease pattern is flat foldable
|ff
1.(Maekawa-Justin)
(M,V)=@3,1) or (1,3)
2.(Kawasaki-Justin)
a+y=p+0=nm

III

3.If ¢, isthe “exceptiona
edge, then a=<p
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After finishing the paper we found Fushimi-
Fushimi, and Murata had already obtained the
same result.

Fushimi, K. and Fushimi, (1979). Origami No Kikagaku (Geometry of
Origami), Nihon Hyoronsha

Murata, S., The theory of paper sculpture, Bulletin of Junior College
of Art, 1966, Vol.4, 61-66, http://ci.nii.ac.jp/naid/110004714036/



Miura Folding




Oval Tessellation




First construction:
Similarity Str. on 2-dim. torus



(G, X)-structure

Thurston Lecture Note: Chapter 3

Let X be any real analytic manifold, and

G a group of real analytic diffeomorphisms of X.

M is (G, X)-manifold if:

There exist U1, U2, ... coordinate charts for M, with maps ¢i: Ui =
X and transition functions yij in G satisfying yij ° ®i = ¢j




Developing map

Consider an analytic continuation of ¢1 along a pathy in M
beginning in U1=There is a global analytic continuation of ¢1
on the universal cover of M.

This map, D : M™ = X, is called the developing map.




Euclidean str. on 2-dim. torus




Developing map

Universal cover of the torus \

This figure shows that the 2-dim torus
Is a (E%, Isom(E?)) (: Euclidean) manifold.



Similarity Structure (F}B{LFE1&)

(G, X) -structure with
X : Euclidean plane

(7: the group of similar translations on X
is (2-dim.) similarity str.



Similarity Structure on 2-dim. torus




divide







Consistency condition

[

—R,

\l}




Consistency condition

similar
transformation




Consistency condition




Consistency condition

local similarity structure are not consistent around v,



Developing map

In general the image

of a developing map

IS messy.

x| x| =® | =

R R

.| R, R, | R,
R R
R, R




Problem

Find out sim. str. as above satisfying:

The 1mage of the developing map with mount/valley
assignment given by those in the following figure 1s
a crease pattern s.t. each vertex satisfies the
condition of (degree 4 flat folding) .

Rl RQ

R3 R4
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The Result

Let R1, R2, R3, R4 be as:
R1, R4 are similar trapezoids
*R2, R3 are parallelogram

with angles a, B, y, 6 asin
figure. Suppose:

a<B<y, and
n—-28=2n/n(n €1{3,4,..})
Then, this gives an answer to
Problem. n
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c 1.22x - 0.97y = -0.02
d: 0.23x + 1.54y = 1.84
m: 0.98x - 0.33y = 1.4
n: -0.21x + 1.02y = 0.29

A = (-0.06, 2.11)
A’ = (0.51, 0.66)
A, = (0.36, -1.02)
B = (0.32, L.15)

B' = (0.96, 1.96)

B" = (148, 1.88)
B™ = (1.48, 1.88)
B™) = (1.86, 0.92)
B', = (1.18, 0.68)
B, = (-0.66, -0.87)

C = (0.83, 1.07)
C' = (2.49, 2.09)
C", = (1.85, 1.28)

C'; = (1.52,0.3)
C, = (0.58, -0.36)

D = (L.29, 0.55)
D' = (0.78, 0.63)
D, = (0.32, 1.15)

E = (2.31, 0.76)
















Further research

2-dimensional Euclidean orbifold:

THE GEOMETRIES OF 3-MANIFOLDS

PETER SCOTT
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CRIGAMI TESSELLATIONS

Awe-Inspiring Geometric Designs










TABLE 4.4
THE SEVENTEEN CLOSED 2-DIMENSIONAL EUCLIDEAN ORBIFOLDS

The integers in brackets specify the cone angles. Thus (n) denotes a cone angle 2n/n.
Note that all boundary curves are reflector curves.

Underlying Number of Seifert bundles ~ Number with orientable
surface X Cone points over X withe =0 total space

Torus 3 1
Klein bottle 5 1
- N 2 §? 1 1
= s2 (2,4,4) 1 1
o G2 s? (2,3,6) 1 !
Voot s? (3.3.3) ‘ k
750 p2 2.2) 2 I
= “ Annulus 2 0
Fvﬁ A > oebius band 2 0
D? (2,2) 1 0

The remaining seven orbifolds all have corner reflectors and have underlying surface D?.
In the first column, an integer (n) specifies a cone angle of 2a/n. In the second column, an integer (n)
specifies an angle of n/n.

Cone points Corner reflectors Picture
& -<A_>
L0 e
\c\" 7 ,0’\ (3) (3)
(A0S (4) (2) d)
(2,2,2,2) 1
(2,4,4) B
(2,3,6) O~
(3,3,3) A




Second construction:
Shrink and Rotate
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Shrink and Rotate

Every Spider Web Has a
Simple Flat Twist Tessellation

Robert J. Lang and Alex Bateman

In this paper, Lang and Bateman make detailed
analysis of the construction of flat fold. Origami,
called Shrink and Rotate, proposed by Bateman



Shrink and Rotate
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Why “Shrink and Rotate” works?

(0,0) -
Er) Aw’p
A (d,0) /g} 6(5.p)
—a.0) ' \/K\ =
B(p) L) (B,p)| m




Previous high school math can show:

_ 1 SiIl ji_}
x = COS ‘ :
\/p? —2pcosff+1

Note that a depends B and p only.



This shows :
each vertex of the obtained crease pattern
satisfies the flat foldability condition
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You might think that the argument works for
more general tessellations.

Yes, that is true.

In fact, the argument works for

Voronoi tessellation.



Voronoi origami
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http://junmitani.hatenablog.com/entry/20130516







Crease pattern and Folded origami

| and a student of mine, Atsumi Hokkyo,
examined the paper and encountered:

Consider the following: if we construct two shrink-rotate tessellations
from a given tiling using a twist angle a for one of them and —a for the
other, then all of the polygons in the former will be similar (in the strict
geometric sense) to the corresponding polygon in the other, with a single
scaling constant between every pair of polygons. What’s more, in the
corresponding parallelograms, the angles that become twist angles are equal
and opposite—which means the same relation must be true for the opposite



Theorem 1 (Crease Pattern/Folded Form Duality). If a shrink-rotate tessellation
crease pattern is constructed from a tiling using aspect ratio parameter and

twist angle (7, ), then the folded form of that tessellation is given to within
a scaling constant by the same construction using (v, —«).






In her master thesis, Hokkyo showed that the
statement does not hold in general.
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Third construction:
Hokkyo’s construction



Hokkyo’s construction
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Hokkyo’s construction
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Hokkyo’s construction
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Hokkyo’s construction
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Hokkyo’s construction
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Hokkyo’s construction




Hokkyo’s construction
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Interesting Feature

The statement of Theorem 1(Lang-Bateman)
holds for Hokkyo’s origami.



Question

Is there a “mathematical structure” in
Hokkyo’s origami ?



