The realization problem for Jørgensen numbers

Ryosuke Yamazaki (joint work with Yasushi Yamashita)

Gakushuin Boys' Senior High School

October 22, 2017 トポロジーとコンピュータ 2017

Contents

- Introduction
 - Jørgensen numbers
 - Proof of $r \ge 2.5$

- Main result
 - Proof of $1 \le r \le 4$
 - Jørgensen groups of parabolic type

Background

- ▶ A Kleinian group is a discrete subgroup of Isom $^+(\mathbb{H}^n)$.
- ▶ Isom⁺(\mathbb{H}^3) $\cong PSL(2,\mathbb{C})$ (by the Poincaré extension).
- ▶ Σ : a complete hyperbolic manifold. $\Longrightarrow \exists \rho : \pi_1(\Sigma) \longrightarrow \textit{PSL}(2,\mathbb{C}) : \text{a discrete, faithful representation.}$
- ▶ Conversely, if $G < PSL(2, \mathbb{C})$ is a torsion-free Kleinian group, then \mathbb{H}^3/G is a complete hyperbolic 3-manifold.
- ▶ The limit set $\Lambda(G)$ of a Kleinian group G is the set of accumulation points of $G \cdot z$ ($z \in \mathbb{H}^3$). $\Lambda(G) \subset \partial \mathbb{H}^3 = \hat{\mathbb{C}}$.
- ▶ The ordinary set is $\Omega(G) = \hat{\mathbb{C}} \setminus \Lambda(G)$. If $\Omega(G) \neq \emptyset$, then each component of $\Omega(G)/G$ is a Riemann surface.

Jørgensen's inequality

▶ When is a non-elementary group discrete (i.e. a Kleinian group)?

Theorem (Jørgensen '76)

$$G = \langle f,g \rangle < PSL(2,\mathbb{C})$$
: a non-elementary Kleinian group. Then,

$$J(f,g) := |\operatorname{tr}^2(f) - 4| + |\operatorname{tr}(fgf^{-1}g^{-1}) - 2| \ge 1.$$

The constant 1 in the right-hand side is the best possible.

Remark (Jørgensen '76)

 $G < PSL(2, \mathbb{C})$: a non-elementary group. Then,

G is a Kleinian group. $\iff \forall f, g \in G, \langle f, g \rangle$ is a Kleinian group.

4□ > 4□ > 4□ > 4□ > □
900

Jørgensen numbers

Definition

 $G < PSL(2,\mathbb{C})$: a two-generator group.

- ▶ $J(G) := \inf\{J(f,g) \mid G = \langle f,g \rangle\}$ is the *Jørgensen number* of G.
- G is a Jørgensen group if G is Kleinian and J(G) = 1.

Example

- ► The modular group, the Picard group, the figure-eight knot group are Jørgensen groups. (Sato '01)
- ▶ For the Whitehead link group G_W , $J(G_W) = 2$. (Sato '04)
- For a quasi-fuchsian punctured torus group G, if there exists a generator (f,g) such that $\operatorname{tr}(f),\operatorname{tr}(g),\operatorname{tr}(fg)\in\mathbb{Z}$, then J(G)=9. (Y. '16 master thesis)

ロ ト (個) (注) (注) (注) りく()

Realization problem

Problem (Oichi-Sato '06)

For a real number r > 1, when does there exist a non-elementary Kleinian group whose Jørgensen number is equal to r?

Theorem (Yamashita-Y. '17)

For any $r \geq 1$, there exists a non-elementary Kleinian group G such that J(G)=r.

6 / 21

Known results

Theorem (Oichi-Sato '06)

- ▶ For any $n \in \mathbb{Z}_{\geq 1}$, there exists a non-elementary Kleinian group G such that J(G) = n.
- For any r > 4, there exists a classical Schottky group G such that J(G) = r.

Remark (Gilman '91, Sato' 98)

Any Schottky group is not a Jørgensen group. In particular, if a Schottky group G is Fuchsian, then J(G) > 4.

Theorem (Callahan '09, PhD thesis)

The only torsion free Jørgensen group is the figure-eight knot group.

The Riley slice of the Schottky space

- ▶ Let $G_o = \langle X, Y_o \rangle$ be a non-elementary group generated by two parabolic transformations X, Y_a .
- We normalize so that $Fix(X) = {\infty}$, $Fix(Y_{\rho}) = {0}$:

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ Y_{\rho} = \begin{pmatrix} 1 & 0 \\ \rho & 1 \end{pmatrix} \ (\rho \in \mathbb{C}).$$

Definition

The Riley slice is defined by

$$\mathcal{R}:=\left\{\rho\in\mathbb{C}\left|\begin{matrix} G_{\rho}\text{ is free and Kleinian} \text{ and}\\ \Omega\left(G_{\rho}\right)/G_{\rho}\text{ is a 4-times punctured sphere}\end{matrix}\right\}.$$

Remark (cf. Maskit-Swarup '88, Maskit '81)

The Riley slice \mathcal{R} is on the boundary of the Schottky space.

Keen-Series's theory for the Riley slice :

- ▶ a free homotopy class of a simple loop of slope $p/q \in \mathbb{Q}$ on the (topological) 4-times punctured sphere \longleftrightarrow a representative word $V_{p/q}(\rho)$ in the conjugacy class in G_{ρ}
- tr $V_{p/q}(\rho)$ is a polynominal of ρ . (trace polynominal)
- ▶ Riley slice coincides with the closure of the union of rational pleating rays $\mathcal{P}_{p/q}$, that are disjoint curves running from distinct points on $\partial \mathcal{R}$ to ∞ .

Remark (Ohshika-Miyachi '10)

 G_{ρ} is free and Kleinian $\iff \rho \in \overline{\mathcal{R}}$.

Produced by software "OHT" from Professor Yasushi Yamashita

10 / 21

Produced by software "OHT" from Professor Yasushi Yamashita

An extension of Oichi-Sato's theorem

Lemma

For any $\rho \in \overline{\mathcal{R}}$, $J(G_{\rho}) = |\rho|^2$.

Proposition (Keen-Series '94, Komori-Series '98)

For the end point $\rho \in \partial \mathcal{R}$ of pleating ray $\mathcal{P}_{p/q}$, tr $V_{p/q}(\rho) = -2$.

Hence, we obtain the following theorem:

Theorem (Y. '16 master thesis)

For any r > 2.467, there exists a non-elementary Kleinian group G on the boundary of the Schottky space of rank 2 such that J(G) = r.

Contents

- Introduction
 - Jørgensen numbers
 - Proof of r > 2.5
- Main result
 - Proof of 1 < *r* < 4
 - Jørgensen groups of parabolic type

Line matrices

Definition

[z,w]: the geodesic in \mathbb{H}^3 from z to w for $z,w\in \hat{\mathbb{C}}$.

$$M([z,w]) := \frac{i}{w-z} \begin{pmatrix} z+w & -2zw \\ 2 & -z-w \end{pmatrix}$$
: π -rotation about $[z,w]$.

For $a \geq 1$,

$$P_a := M([a, -3a]), Q := M([1, -1]), R := M([0, \infty]).$$

Lemma

For $a \ge 1$, $G_a := \langle P_a, Q, R \rangle$ is a non-elementary Kleinian group.

Proof.

Since G_a has a presentation

$$\langle P_a, Q, R \mid (P_a)^2 = Q^2 = R^2 = (QR)^2 = (RP_a)^3 = 1 \rangle,$$

it acts $\mathbb{H}^{\mathbf{2}}$ properly discontinously as the Poincaré extension.

▶ A fundamental polygon for $G_a \curvearrowright \mathbb{H}^2$

▶ The diagonal slice of singular solid torus (studied by Series-Tan-Yamashita)

Let
$$A_a := P_a Q = \begin{pmatrix} -3a/2 & 1/2 \\ -1/2 & -1/2a \end{pmatrix}, \ B := R = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

- ▶ Since $Q = A_a B A_a^{-1} B^{-1} A_a B$, We have $G_a = \langle A_a, B \rangle < PSL(2, \mathbb{C})$.
- For any $a \ge 1$, $tr[A_a, B] = 1$.

Proposition

If
$$1 \le a \le \frac{\sqrt{7} + 2}{3}$$
, then $J(G_a) = J(A_a, B) = \frac{(3a^2 - 1)^2}{4a^2}$.

In particular...

Theorem (Yamashita-Y. '17)

For any $1 \le r \le 4$, there is a non-elementary Kleinian group G such that J(G) = r. Hence, we obtained a complete solution for realization problem.

Jørgensen groups of parabolic type

Definition

A non-elementary Kleinian group G is extreme if there exists a generating pair (f,g) such that J(f,g)=1.

if extreme, then Jørgensen group.

Theorem (Jørgensen-Kiikka '75)

If G is a extreme Fuchsian group, then G is a triangle group of signature (2,3,a) $(7 < a < \infty)$.

Proposition

Let $G = \langle f, g \rangle$ be a extreme Kleinian group of parabolic type (i.e. f is parabolic). Then, up to conjugation,

$$f=egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}, \ g=g_{\sigma,\mu}:=egin{pmatrix} \mu\sigma & \mu^2\sigma-1/\sigma \ \sigma & \mu\sigma \end{pmatrix} \quad (|\sigma|=1,\ \mu\in\mathbb{C}).$$

Theorem (Li-Oichi-Sato '04, '05)

In the above normalization, extreme Kleinian groups of parabolic type in the case $\mu=ik$ $(k\in\mathbb{R})$ are completely classified.

Conjecture (Oichi-Sato)

For any Jørgensen group G, there exists (σ, ik) $(|\sigma| = 1, k \in \mathbb{R})$ such that G is conjugate to $G_{\sigma,ik} = \langle f, g_{\sigma,ik} \rangle$.

Theorem (Callahan '09, PhD thesis)

 $PGL(2,\mathcal{O}_3),\ PSL(2,\mathcal{O}_3),\ PSL(2,\mathcal{O}_7),\ PSL(2,\mathcal{O}_{11})\ \left(\mathcal{O}_d:=\mathbb{Q}(\sqrt{-d})\right)$ are counterexamples for the conjecture.

<ロ > < 部 > < き > くき > ・ き ・ り < @ ·

▶ Jørgensen numbers on the diagonal slice

Thank you for your attention!