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Introduction Jørgensen numbers

Background

▶ A Kleinian group is a discrete subgroup of Isom+(Hn).

▶ Isom+(H3) ∼= PSL (2,C) (by the Poincaré extension).

▶ Σ : a complete hyperbolic manifold.
=⇒ ∃ρ : π1 (Σ) −→ PSL (2,C) : a discrete, faithful representation.

▶ Conversely, if G < PSL (2,C) is a torsion-free Kleinian group, then
H3/G is a complete hyperbolic 3-manifold.

▶ The limit set Λ(G ) of a Kleinian group G is the set of accumulation
points of G · z (z ∈ H3). Λ(G ) ⊂ ∂H3 = Ĉ.

▶ The ordinary set is Ω(G ) = Ĉ \ Λ(G ). If Ω(G ) ̸= ∅, then each
component of Ω(G )/G is a Riemann surface.
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Introduction Jørgensen numbers

Jørgensen’s inequality

▶ When is a non-elementary group discrete (i.e. a Kleinian group)?

Theorem (Jørgensen ’76)

G = ⟨f , g⟩ < PSL (2,C) : a non-elementary Kleinian group. Then,

J (f , g) := | tr2 (f )− 4|+ | tr
(
fgf −1g−1

)
− 2| ≥ 1.

The constant 1 in the right-hand side is the best possible.

Remark (Jørgensen ’76)

G < PSL (2,C) : a non-elementary group. Then,
G is a Kleinian group. ⇐⇒ ∀f , g ∈ G , ⟨f , g⟩ is a Kleinian group.
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Introduction Jørgensen numbers

Jørgensen numbers

Definition

G < PSL (2,C) : a two-generator group.

▶ J(G ) := inf{J (f , g) | G = ⟨f , g⟩} is the Jørgensen number of G .

▶ G is a Jørgensen group if G is Kleinian and J(G ) = 1.

Example

▶ The modular group, the Picard group, the figure-eight knot group are
Jørgensen groups. (Sato ’01)

▶ For the Whitehead link group GW , J(GW ) = 2. (Sato ’04)

▶ For a quasi-fuchsian punctured torus group G , if there exists a
generator (f , g) such that tr (f ) , tr (g) , tr (fg) ∈ Z, then J (G ) = 9.
(Y. ’16 master thesis)
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Introduction Jørgensen numbers

Realization problem

Problem (Oichi-Sato ’06)

For a real number r ≥ 1, when does there exist a non-elementary Kleinian
group whose Jørgensen number is equal to r?

Theorem (Yamashita-Y. ’17)

For any r ≥ 1, there exists a non-elementary Kleinian group G such that
J(G ) = r .
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Introduction Jørgensen numbers

Known results

Theorem (Oichi-Sato ’06)

▶ For any n ∈ Z≥1, there exists a non-elementary Kleinian group G
such that J(G ) = n.

▶ For any r > 4, there exists a classical Schottky group G such that
J(G ) = r .

Remark (Gilman ’91, Sato’ 98)

Any Schottky group is not a Jørgensen group.
In particular, if a Schottky group G is Fuchsian, then J(G ) > 4.

Theorem (Callahan ’09, PhD thesis)

The only torsion free Jørgensen group is the figure-eight knot group.
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Introduction Proof of r ≥ 2.5

The Riley slice of the Schottky space

▶ Let Gρ = ⟨X ,Yρ⟩ be a non-elementary group generated by two
parabolic transformations X ,Yρ.

▶ We normalize so that Fix (X ) = {∞}, Fix (Yρ) = {0} :

X =

(
1 1
0 1

)
, Yρ =

(
1 0
ρ 1

)
(ρ ∈ C) .

Definition

The Riley slice is defined by

R :=

{
ρ ∈ C

∣∣∣∣Gρ is free and Kleinian and
Ω (Gρ) /Gρ is a 4-times punctured sphere

}
.

Remark (cf. Maskit-Swarup ’88, Maskit ’81)

The Riley slice R is on the boundary of the Schottky space.

Ryosuke Yamazaki (joint work with Yasushi Yamashita) (Gakushuin Boys’ Senior High School)The realization problem for Jørgensen numbers (joint work with Yasushi Yamashita)October 22, 2017 8 / 21



Introduction Proof of r ≥ 2.5

Keen-Series’s theory for the Riley slice :

▶ a free homotopy class of a simple loop of slope p/q ∈ Q on the
(topological) 4-times punctured sphere
←→ a representative word Vp/q(ρ) in the conjugacy class in Gρ

▶ trVp/q(ρ) is a polynominal of ρ. (trace polynominal)

▶ Riley slice coincides with the closure of the union of rational pleating
rays Pp/q, that are disjoint curves running from distinct points on ∂R
to ∞.

Remark (Ohshika-Miyachi ’10)

Gρ is free and Kleinian ⇐⇒ ρ ∈ R.
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Introduction Proof of r ≥ 2.5

▶ Produced by software “OHT” from Professor Yasushi Yamashita
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Introduction Proof of r ≥ 2.5

An extension of Oichi-Sato’s theorem

Lemma

For any ρ ∈ R, J(Gρ) = |ρ|2.

Proposition (Keen-Series ’94, Komori-Series ’98)

For the end point ρ ∈ ∂R of pleating ray Pp/q, trVp/q(ρ) = −2.

Hence, we obtain the following theorem :

Theorem (Y. ’16 master thesis)

For any r ≥ 2.467, there exists a non-elementary Kleinian group G on the
boundary of the Schottky space of rank 2 such that J(G ) = r .
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Main result Proof of 1 ≤ r ≤ 4

Line matrices

Definition

[z ,w ] : the geodesic in H3 from z to w for z ,w ∈ Ĉ.

M ([z ,w ]) :=
i

w − z

(
z + w −2zw

2 −z − w

)
: π-rotation about [z ,w ].

For a ≥ 1,

Pa := M ([a,−3a]) ,Q := M ([1,−1]) ,R := M ([0,∞]) .

Lemma

For a ≥ 1, Ga := ⟨Pa,Q,R⟩ is a non-elementary Kleinian group.

Proof.

Since Ga has a presentation
⟨Pa,Q,R | (Pa)

2 = Q2 = R2 = (QR)2 = (RPa)
3 = 1⟩,

it acts H2 properly discontinously as the Poincaré extension.
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Main result Proof of 1 ≤ r ≤ 4

▶ A fundamental polygon for Ga ↷ H2
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Main result Proof of 1 ≤ r ≤ 4

▶ The diagonal slice of singular solid torus (studied by
Series-Tan-Yamashita)
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Main result Proof of 1 ≤ r ≤ 4

Let Aa := PaQ =

(
−3a/2 1/2
−1/2 −1/2a

)
, B := R =

(
i 0
0 −i

)
.

▶ Since Q = AaBA
−1
a B−1AaB, We have Ga = ⟨Aa,B⟩ < PSL (2,C).

▶ For any a ≥ 1, tr[Aa,B] = 1.

Proposition

If 1 ≤ a ≤
√
7 + 2

3
, then J(Ga) = J(Aa,B) =

(3a2 − 1)2

4a2
.

In particular...

Theorem (Yamashita-Y. ’17)

For any 1 ≤ r ≤ 4, there is a non-elementary Kleinian group G such that
J(G ) = r . Hence, we obtained a complete solution for realization problem.
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Main result Jørgensen groups of parabolic type

Jørgensen groups of parabolic type

Definition

A non-elementary Kleinian group G is extreme if there exists a generating
pair (f , g) such that J(f , g) = 1.

if extreme, then Jørgensen group.

Theorem (Jørgensen-Kiikka ’75)

If G is a extreme Fuchsian group, then G is a triangle group of signature
(2, 3, q) (7 ≤ q ≤ ∞).

Proposition

Let G = ⟨f , g⟩ be a extreme Kleinian group of parabolic type (i.e. f is
parabolic). Then, up to conjugation,

f =

(
1 1
0 1

)
, g = gσ,µ :=

(
µσ µ2σ − 1/σ
σ µσ

)
(|σ| = 1, µ ∈ C).
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Main result Jørgensen groups of parabolic type

Theorem (Li-Oichi-Sato ’04, ’05)

In the above normalization, extreme Kleinian groups of parabolic type in
the case µ = ik (k ∈ R) are completely classified.

Conjecture (Oichi-Sato)

For any Jørgensen group G , there exists (σ, ik) (|σ| = 1, k ∈ R) such that
G is conjugate to Gσ,ik = ⟨f , gσ,ik⟩.

Theorem (Callahan ’09, PhD thesis)

PGL(2,O3), PSL(2,O3), PSL(2,O7), PSL(2,O11)
(
Od := Q(

√
−d)

)
are

counterexamples for the conjecture.
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Main result Jørgensen groups of parabolic type

▶ Jørgensen numbers on the diagonal slice
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Main result Jørgensen groups of parabolic type

Thank you for your attention!
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