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An analogue of non-commutative Iwasawa theory for fibered knots

It is known that there are deep analogies between low-dimensional topology and al-
gebraic number theory. In particular, Alexander-Fox theory is considered to be the
correspondent of Iwasawa theory. In this talk, based on the insight of non-commutative
Iwasawa theory, we construct a knot invariant for fibered knots, which is a refinement
of classical Alexander polynomials. As an application, we generalize Fox’s classical for-
mula for the sizes of first homology groups, extending it from cyclic covers to certain
non-abelian covers of S? branched along knots.
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Kontsevich invariant and Galois action for 2-component string links
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On the slice-torus invariant q,; from Z, equivariant Seiberg-Witten theory

Slice-torus invariants are knot invariants whose existence not only immediately implies
the Milnor conjecture but also provides a lower bound for the 4-ball genus of every
knot. Well-known examples include the Ozsvath-Szabé 7 invariant and the Rasmussen
s invariant. M. Taniguchi and the speaker have constructed a new slice-torus invariant
gy arising from Zs-equivariant Seiberg-Witten theory. In this talk, we will explain

recent developments concerning this invariant.
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On knot types of clean Lagrangian intersections
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The unoriented band unknotting number of a knot is the minimum number of oriented
or non-oriented band surgeries that turn the knot into the unknot. Batson introduced
a certain non-oriented band surgery for a torus knot. The minimum number of these
operations required to turn a torus knot into the unknot is called the pinch number,
and it can be easily calculated from the parameters of the torus knot. In this talk, we
explain that the unoriented band unknotting number and the pinch number coincide
for torus knots. In the proof, we use the torsion order of the unoriented knot Floer

homology.
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Metrics for quandles
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Generating sets of Reidemeister moves

Whether a given set of Reidemeister moves generates ambient isotopy is completely
understood in the unoriented setting, whereas in the oriented setting it has not yet
been fully determined. In this talk we completely determine, among those generating
sets of oriented Reidemeister moves already known, which ones are minimal. For
oriented Reidemeister moves, generating sets with exactly one type III (R3) move are
commonly used; indeed, having precisely one R3 is a necessary condition for minimality.
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We therefore examine all sets that become generating by adding type I (R1) and type
IT (R2) moves in the minimal possible numbers. Consequently, it suffices to determine,
for sets of cardinality four and five, whether they form a generating set and, if so,
whether they are minimal. There are 288 and 192 candidates, respectively. We resolve
all but four of these cases, determining for each whether it is a generating set and
whether it is minimal. This is a joint work with Noboru Ito (Shinshu University).
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Ma-Qiu index in knot theory

The Ma-Qiu index of a group is the minimum number of normal generators of the com-
mutator subgroup. We explain that it measures the distance of presentaiton distance

of two groups, and demonstrate several applications of Ma-Qiu index to knot theory.
We also explain several connections to various open problems in group theory.
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The half Alexander polynomials of amphicheiral 2-bridge knots

For a negative amphicheiral knot K, its Alexander polynomial at t? is of the form
f(@)f(&1). Then we call f(t) the half Alexander polynomial of K. We compute the
half Alexander polynomial of an amphicheiral 2-bridge knot, and show that it can be ex-

pressed by the Alexander polynomials of the quotient knot and link by the amphicheiral
involution. We remark that the Conway polynomial is better for computations.
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Degeneracy slopes, boundary slopes and exceptional surgery slopes

In this talk, I will discuss the distance between a degeneracy slope for a very full essen-



tial lamination and a boundary slope of an essential surface embedded in a compact,
orientable, irreducible, atoroidal 3-manifold with incompressible torus boundary. I will
present an upper bound for this distance in terms of the topology of the essential
surface. I will also explain three applications, including some bounds on exceptional
surgery slopes.
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Simple ribbon knots obtained by the product of torus knots (joint with T. Shibuya(Osaka
institute of technology))

For a simple ribbon knot, its Alexander polynomial Ag(¢) is determined. A knot k is
called a pseudo simple ribbon knot if it has an Alexander polynomial as shown above.
Let K be a product of torus knots. We give necessary and sufficient conditions that
K is pseudo simple ribbon knot, and give necessary and sufficient conditions that K is
simple ribbon knot. And we consider the second coefficient of the Conway polynomial
of a simple ribbon fusion knot and determine its value.
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Both of the 2-twist-spun 5y-knot and the 4-twist-spun trefoil have the triple point
number eight
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A numerical invariant and Legendrian embeddings of non-intrinsically knotted graphs

A graph G is said to be intrinsically knotted if for any spatial embedding f of G,
f(G) contains a non-trivial knot. In this talk, we introduce a numerical invariant of
non-intrinsically knotted graphs in terms of Legendrian spatial embeddings. We also
present calculation results of the invariant for several graphs.
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