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This article was a part of the draft “An affirmative answer to a conjecture for Metoki class” by
Kentaro Mikami, submitted to some Journal. In order to shorten the draft, the author will put here
one of the two proofs of the next theorem by D. Kotschick and S. Morita ([4]).

In this note, we just write down the proof by Groebner Basis theory.

About mathematical background, we refer to [4] or the draft “An affirmative answer to a conjecture
for Metoki class” by Kentaro Mikami. For more precise notations or notions, we refer to [6].

We use Maple Groebner Package for computing Groebner Basis and the normal form.

There are several symbol calculus softwares beside Maple, Mathematica, Risa/Asir and so on.
Risa/Asir is popular in Japanese mathematicians because it is bundled in Math Libre Disk which is
distributed on the annual meetings of Mathematical Society of Japan. So, the author uploads the
source code and the output about Risa/Asir concerning to the Theorem below by D. Kotschick and
S. Morita on URL http://www.math.akita-u.ac.jp/ mikami/Conj4MetokiClass/. You can compare
the results by Maple (which is on this paper) and those on the same URL, then you will understand
that the both are the same, up to non-zero scalar multiples.

There are two kinds of cohomology groups H&p(ham,, , sp(2n, R)),, and Hyp(ham), , sp(2n, R)),.
When n = 1, Gel'fand-Kalinin-Fuks ([2]) showed that Hgp(ham,,sp(2,R)),, = 0 for the weight
w = 2,4,6 and the Hp(ham,, sp(2,R))s = R whose generator is called the Gel’fand-Kalinin-Fuks
class.

The next non-trivial result in this context is HYp(ham,, sp(2, R))14 = R, which is proved by S. Metoki
([5]) in 1999. Here, ham, denotes the Lie algebra of the formal Hamiltonian vector fields on R,

D. Kotschick and S. Morita ([4]) studied H&p(hamd, sp(2, R)),, and determined the whole space for
w < 10, where ham) is the Lie subalgebra of the formal Hamiltonian vector fields which vanish at
the origin of R?. One of their several results is:

Theorem[4] There is a unique element 1 € Hp(hamd)$? = R such that
Gel'fand-Kalinin-Fuks class = n A w € Hip(hamy, 5p(2, R))g

where w is the cochain associated with the linear symplectic form of R,

We do not want to repeat what is the conjecture by D. Kotschick and S. Morita ([4]). The draft
“An affirmative answer to a conjecture for Metoki class” studied this conjecture.
Our aim of this rough draft is to give another proof of the theorem above by using Grobner basis

theory (cf. [1]).

Let x,y be the standard basis of R? with the Poisson bracket is {z,y} = 1. We denote the standard
e A—a

basis of A-homogeneous polynomials of x and y as ———
al (A—a)!
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and the dual basis is written by 2.
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Using the method in [6], we can understand the structures of C%p(hamy, sp(2,R))1o concretely.

We denote C&p(hamy,sp(2,R))y0 by C*. We choose our concrete bases as {q;};_; of C4, {w;};2,
of C° and {r;};_, of C%. Then the matrix representations of linear maps d; : C* — C° and
dy : C° — C° are given as

[di (q1),...,d1(Qo)] = [W1, ..., W] M

and
[dl <W1)7"'7d1 (WIQ)] - [r17r27r3’r4]N
where r 135 15 5 45 75 T
_- _ =45 -1 oo C
10% 108 " 2 ’ 605 446 940 1%6 | : :
— — 0 0 0 — - —— — 0 0 0
%% 11 9 11 11 11 11 o7
— 12 —= - — 1
1 0 22 9 0 0 0 1 8 0
0 0 -10 3 -2 2 1 0 6 4 -1 0
M = ? 2 4_7 -9 4 B 9 2 1 _E 1
0 5 2 1%5 343 o 5 5 16 1 %5 0 (1)
0 5 45 o —40 65 10 0 50 20 ——5
3 23 11 9
0 - 18 - -3 30 = - 9 6 —-33 0
2 2 2
0 0 0 0 0 6 0 -6 0 0 0
i 0 0 -6 =3 0 0 0 0 0 3 —6 70_
and ~ . _
0 140 O 0 0 —-15 15 30 5 0O 0 O
1 11 1 1
-5 -4 - —— 3— 3— -3 =2 § -1 2 0
N = 2B A % @)
-6 32 -2 -12 - — 18 —-12 —— 0 &8 O
3 3 3
0 0 0 42 7 0 0 0 0 0 14 3

Since rankM = 7 and rankN = 4, we see the dimensions of d; (C*) and ker(d; : C° — () ,
and so on. The precise data of the structures of Cy(hamy,sp(2,R))1o and HEp(hamy, sp(2, R)) 1o
is in the table below, where dim and rank mean the dimension of C* and the rank of d;

C* — C*™', and Betti num is the Betti number, which is the dimension of the cohomology group

H.GF(baméa 5p(27 R))m.

ham;, w=10[0 — C* — C° — C* — C° — C° — 0
dim 1 3 9 12 4
rank 0 1 2 7 4 0
Betti num 0 0 0 1 0

We also know the structures of C&(hams, sp(2, R))g well. For simplicity, we denote Cgp(ham), sp(2, R))s
by €°.
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For instance, the matrix representations of dy : €% — €7 and dy : €7 — €® are given as follows:

E 0 —20 —60 15
4
—18 —12 0 0 0
27
- 0 -20 12 3
4 2
0 0 2 -10 =
11 731
= 1 =
0 % 7 9 }13
0 -= -9 =
: 6
_Z 9 -
0 2 0 12
0 0 0 0 0
77 0 0 -2 -6 0
1, L, Wl
% 136 31
= 2 - _Z
2 0 3 3
0 8 0 0 0
0 0 0 0 0
0 0 0 0 0
4
0 0 0 0 —
3
0 0 2 0 -1
0 0 0 2 1
3
0 0 0 0 0
and
0 =35 0 0
39 31
o 1 -9 —— ——
N = 8
—16 8 9 5
63 21
0 0 — —
L 2 2

84

5
4
23
3
0

135

4
—45

0

2

15

—45
123

39

—30

—75

—-15 —15
21 10
0 0
1
—Z 2
233
— 1
12 0
71
695 ;
D -5
-9 6
0 0
0 0
0 0
1 —6
—6 0
-1 =2
46
— 0
3
—4 0
S
3
0 0
0 -15
—-10 —10
8
2 2
3
0 0

0 0 0 0
0 0 0 0
63
— —18 0 0
8
-7 1 0 0
49
- 4
248 1 ’ |
= = 0 0
3? 265
T 2 00
0 0 0 0
21
-y 6 70 0
0 0 0 —28
0 0 0 —28
0 0 0 —112
~-3/2 -3 0 48
5
— -1 4
% 0
3 11 0 —136
21
L T
701
— - 0 14
16 16 90
1 -1 —— 0
3
25 5
— 0 0 0 5
85 2 20
— L =0 -1
2. 3 3
— 0 8 0 1
3
0 0O —-14 3 O

Since rankM = 9 and rankN = 4, we see the dimensions of dy (€%) and ker(dy : € — C%) | and so
on. The precise data of the structures of Cop(hamd, sp(2,R))s and H&p(ham), sp(2,R))g are in the

table below.

ham), w=8[0 — ¢ — ¢ — & — ¢ - ¢ - & — 0
dim 5 13 17 18 14 4
rank 0 5 8 9 9 4 0
Betti num 0 0 0 0 1 0
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Since HYp(hamy, sp(2,R))1o and Hip(ham), sp(2, R))s are both 1-dimensional, if
WA H?}F(ham;>5p(27R))10 - HéF(hamgvsp(Z’R))S

is non-zero map, then it is an isomorphism.

We need to check if w Aker(d; ) C do (C&(hams, sp(2,R))s) or not. For that purpose, choose a basis
ki,... kg of ker(d; ) and linear independent cochains by, ..., by in C&p(ham), sp(2,R))s such that
do (b1), ..., do (by) is a basis of dy (C&p(ham), sp(2,R))g).

By taking matrix representation, we see that

raﬂk(cu/\kl,...,CU/\kg,d()(b1>,...,do(bg)) =10>9

Thus, for an element, say h, which represents the non-trivial cohomology class, we have to check
if w A h is absorbed in dy (C&p(ham3, sp(2,R))g) or not, namely, if w A h realizes the non-trivial
cohomology class in Hip(ham),sp(2,R))s or not. This is our strategy to complete the proof of
Theorem.

Another proof by Grobner bases: Since the both methodologies of using Grobner bases in
order to investigate the cohomology groups HZ,(hamj, sp(2,R))1o or HSp(ham), sp(2, R))s are the
same, we discuss in the case of Hyp(hamy, sp(2,R))y in detail and write down only the result for
HEp(ham), sp(2, R))s. In particular, we discuss the key issue where wA is involved, carefully.
Let {wy,..., Wy} be the basis of C® and {qy, ..., by} be the basis of C* as before. From the matrix
representation (1) of the coboundary operator d; of C* — C®, we define the linear functions

12
g => Xjue  (G=1....9
k=1

where (A,;) = M and {y1,...,y12} are the auxiliary variables.

Fixing a monomial order of polynomials induced, say y; > --- > y12, we get the Grobner basis
G B, of the ideal generated by {g;(y) | 7 = 1,...,9}. This corresponds to the non-zero rows of the
elementary matrix of M obtained by the elementary row operations for M. Thus, the cardinality
of GB, is equal to the rank of M, namely, to dim(d; (C*)) and {g(w) | § € GB.} gives a basis of
dy (C*) (cf. Proposition 3.1 in [1]). In our case,

GB. = [ 21y; — 9ys — 18yg — 15y10 + 30y11 — 140y12,

18ys + 9ys + 15y10 — 30y11 + 140912,

1512ys5 + 75ys — 900yy — 666y10 — 1461y11 + 3290y,

36ys — 3ys + 36y9 — 18y10 + 57y11 — 770y12,

72y3 + 3ys — 3619 — 18y10 + 15y11 — 7012,

63y — 327Tys + 396y9 — 258y19 — 660711 + 3080y12,

189y, — 12yg + 144y + 99y19 + 390y;; — 18205 |
In general, the NormalForm of a given polynomial g with respect to the Groébner basis is the
“smallest” remainder of ¢ modulo by the Grébner basis.

For a linear function L(y) of y1, ..., %12, that L(w) belongs to d; (C*) is equivalent to the Normal-
Form of L(y) with respect to GB, is zero.

Let {r;,rs,rs, vy} be the basis of C° as before. The kernel space of d; : C° — (% whose
12 12

element is given by Z c;w; satisfying Z cjdi (w;) = 0, is characterized by 4 linear functions, say
j=1 j=1

fi(e), fa(c), f3(c), fa(c) of ¢q,. .., c12 given by
[fi(e), fa(c), f3(c), fa(e)] = [er, .- caa] N

4



February 13, 2014 Thursday9:25(another-proof-very-rough)

where N is the matrix representing the operator d; : C° — C° (This means we deal with the dual
map d; * : (05)* — (C’G)*). In our case,

5
f1 = 14062 — 1506 —+ 1507 + 3008 + 509

1 11 31 5)
f2 = —561 — 402 -+ 103 — 304 —+ EC{, -+ ECG — 3C7 — 268 —+ gCg — C10 -+ 2611

22 58 5
f3 = —1601 + 3202 - 203 - 1204 + 305 + 306 - 1867 - 1268 - gCg + 8011
f4 = 4204 + 705 + 14011 + 3612
By taking a monomial order, say c¢; = --- > c12, we get the Grobner basis GB of the ideal

<f1<C),f2(C), f3<0), f4(C)> In our case,

GB = [42¢4 + Tes + 14cqy + 3c1o,
42c3 4 28¢5 — 114cg + 198¢c7 + 228cg + 117¢cg — 48c19 + 4c11 + 6cqo,
56¢cy — b6cg + 6¢7 + 12¢5 + ¢,
168c; — 112¢5 — 182¢6 + 126¢7 + 84cg — 3bcg + 24¢19 — 128¢11 — 12¢15 |

The GB gives a basis of the subspace (d; * : (6’5)* — (CG)*) ((C%").
12

Consider the polynomial h = Z c;y; where {y1,...,y12} are the other auxiliary variables.
j=1
Proposition 3.3 in [1] says that the NormalForm of h with respect to the Grobner basis G B is written
as Z ¢; fj(y) where J is a subset of {1,2,...,12}, fi(y) is linear in {y1,..., 12}, the cardinality of
jet
J is dimker(d, ), and {f;(w) | j € J} gives a basis of ker(d; ). We continue the discussion in our
case, then we have

fl :07 f~2:0, f?):()a .];4:07

]E _2 2 1 L f _13 n 3 + 19 n

5 —3y1 3y3 6y4 Ys, 6 —123/1 28?42 7 Ys T Yo,
f——3 _3 _33 n f——l _3 _38 n
7= 4y1 28@2 7 Ys + Y7, 8 = 2y1 14y2 7 Ys T Ys,

5 1 39

~ - 1 8
fo :2—43/1 - %yz - ﬁys + Yo, fio=— ?yl + §y3 + Y10,

= 16 2 1 ~ 1 1 1
fo=gyv — 57U — 3¥a Ty, fro =101 — —Ys = ¥ T2
Again, fixing the monomial order of {y;}, we get the Grobner basis G By of the ideal generated by
fi (G €J)as
GBy = [ 3ys — 36yy — T2y10 — 3y11 + 1412, 3yr — 18y — 33y10 + 3y11 — 14y12,
18y + 108yg + 231y10 — 21y11 + 98y1a,  36ys + 27y10 — 33y11 + 70y12,
2y4 — dy1o + 3y11 — 42y12,  12y3 + 9y10 + 3y — 14y,
9ys — 504yg — 1158y19 — 141y11 + 658y12,  3y1 — 3y10 + 6y11 — 28y12 |
in our case.
The cohomology HZp(hamy, 5p(2,R))1o corresponds to the Grobner basis GB; /e of the ideal gener-
ated by the NormalForm of g € GB), with respect to GB,. In our case, this is given by

GBk/e = [ 3y8 — 36y9 — 72y10 - 3y11 + 14y12 ] (5)
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HZ;F(I)_amg,sp(ZR))g case: In the case of H.p(ham, sp(2,R))s, we use the notations G By, GB,
and G By, for the Grébner bases corresponding to the kernel, dy-image and Hip(hamg, sp(2, R))s
respectively. The space dy (€°) is characterized by the following Grébner basis:

GB. = [ 3y10 — 3y — 20y12 + 6y14,
100ys + 36y9 — 15y11 — 420192 — 42013 + 350714,
300y; + 84y9 — 135y11 — 98012 + 420y13 + 350114,
100y6 + 204y9 — 135y11 — 1380112 — 180y13 + 750y14,
40ys — 12y9 + 15y11 — 460y12 — 60y13 — 590y14,
4800y, + 84y9 + 2565y11 + 6020y12 + 420y13 — 1085014,
1600y3 — 84yg + 1035y1; — 6020y12 — 420y13 — 595014,
400y — 12y9 — 195y11 — 1860y12 — 5660y13 + 950y 4,
450y, + 24yy + 315y11 + 220y12 + 120113 + 1250114 |

The kernel space of dy : €” — €% is generated by

25 5)
f1 = — 3502 — 3066 — 1508 + ?Cg — 5013
39 31 61
fg 21161 — 962 — §C3 - §C4 — 705 — 7506 — 1067
85 2 20
— 10cs + 709 — 5010 - ?011 — €13 — 3C14

8
f3 = — 1601 + 802 -+ 903 + 5C4 + 5205 + 20C6 + 567

55
— 208 — ?Cg + 8611 + ci13 + 4014
63

21
Ja="res+ rea+ 84c; — Men +3er + Ben

and the kernel space of dy : €” — €3 is characterized by the following Grébner basis.

GBy, = [ 3y10 — 3y11 — 20y12 + 6y14, 12y + 49511 + 3260y12 + 60y13 — 950y14,
ys — 15y11 — 102y12 — 6313 + 32y14,  3yr — 36y11 — 238y12 + 7014,
2ye — 171y — 1136y12 — 24y13 + 338y14,  4ys + 5ly11 + 280y12 — 154414,
16ys — 3y11 — 56y12 — 14y14,  16y3 + 45y11 + 168y12 — 126y14,
dys + 3y + 14y12 — 56113, 2y1 — 3y — 28y12 + 14114 |

thus, HSp(ham, sp(2, R))s is characterized by
G_Bk/e = [ 12y9 + 495y11 + 3260912 + 60y13 — 950y14 |

Take h(y) = 3ys — 36yy — T2y10 — 3y11 + 14y1a from GBy. of (5). Now h(w) is in ker(d; : C° —
C%\ d; (C*). We express the following element

wAh(w) = 2" A 21 Ah(w)
by the basis of €7. We see that

wAh(W) =20 A z] Ah(W) = —9W; + 105W o + 3W; + 14W ;o = h(W)
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where h = —9y; + 105y10 + 3y11 + 14y15. The NormalForm of A with respect to GB, is

63 2079 3423 63 399

2—5y9 + 20 Y11 + 5 Y12 + g?/l:& - 73/14

and is not zero. This finishes the proof of the Theorem. |

Remark We emphasize that everything starts from the concrete bases of cochain complexes CéF(bamé, sp(2, T
Cep(hamy, 5p(2,R))10, Cop(hamsy, sp(2,R))10, Cop(hamy, sp(2,R))s and Chp(hamsy, sp(2, R))s.

Even though we make use of Grobner Base theory or use of classical linear algebra argument, we

are based on some concrete matrix representations.
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