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Abstract. A language L is said to be C-measurable, where C is a class
of languages, if there is an infinite sequence of languages in C that con-
verges to L. In this paper we investigate the measuring power of LT
the class of all locally testable languages. Although each locally testable
language only can check some local property (prefix, suffix, and infix of
some bounded length), it is shown that many non-locally-testable lan-
guages are LT-measurable. In particular, we show that the measuring
power of locally testable languages coincides with the measuring power
of unambiguous polynomials. We also examine the measuring power of
some fragments of unambiguous polynomials.

1 Introduction

A language L is called star-free if it can be represented as a finite combina-
tion of Boolean operations and concatenation of finite languages, and L is called
locally testable if it is a finite Boolean combination of languages of the form
uA∗, A∗v and A∗wA∗. After the celebrated Schützenberger’s theorem giving an
algebraic characterisation [18] and McNaughton–Papert theorem giving a logical
characterisation [10] of star-free languages, both algebraic and logical counter-
parts of many fragments of star-free languages are deeply well-investigated: see
a survey [6] or [11] for example. In particular, McNaughton [9], Zalcstein [24],
and Brzozowski–Simon [4] showed that it is decidable whether a given regular
language is locally testable by giving an algebraic counterpart. Although the
definition of locally testable languages is quite simple, this result is non-trivial
and a proof relies on a deep algebraic decomposition theory.

In this paper, we shed new light on the fragments of star-free languages by
using measurability which is a measure theoretic notion on formal languages.
C-measurability for a class C of languages is introduced by [21] and it was used
for classifying non-regular languages by using regular languages. A language L
is said to be C-measurable if there is an infinite sequence of languages in C
that converges to L. Roughly speaking, L is C-measurable means that it can
be approximated by a language in C with arbitrary high precision: the notion
of “precision” is formally defined by the density of formal languages. Hence
that a language L is not REG-measurable, where REG is the class of all regular
languages, means that L has a complex shape so that it can not be approximated
by regular languages. While the membership problem for a given language L
and a class C asks the existence of single language K ∈ C such that L = K,



the C-measurability asks the existence of an infinite sequence of languages in
C that converges to L. In this sense, measurability is much more difficult than
the membership problem and its analysis is a challenging task. For example, the
author [22] showed that, for the class SF of all star-free languages, the class of
all SF-measurable regular languages strictly contains SF but does not contain
some regular languages. However, the decidability of SF-measurability is still
unknown.

Instead of the class of all regular languages or star-free languages, in this
paper we consider LT-measurability where LT is the class of all locally testable
languages and also consider measuring power of three other fragments of star-
free languages: the class UPol of all unambiguous polynomials, the class PT of all
piecewise testable languages and the class AT of all alphabet testable languages.
The main results of this paper are briefly summarised as follows.

(1) LT-measurability and UPol-measurability are equivalent (Theorem 6 and
Theorem 7).

(2) AT- and PT-measurability are strictly weaker than LT-measurability and
decidable for regular languages (Theorem 8, Theorem 9–11).

The result (1) is the first example of two incomparable subclasses of regular
languages with the same measuring power. The result (2) (PT-measurability, in
particular) is the first non-trivial examples of subclasses of regular languages
with decidable measurability. Historically, locally testable languages [10] and un-
ambiguous polynomials [17] are originally introduced with two different moti-
vations: “locality” versus “unambiguity”. But interestingly, they have the
same measuring power.

The structure of this paper is as follows. Section 2 provides preliminaries in-
cluding density, measurability and definitions of fragments of star-free languages.
The measuring power of LT,UPol and AT,PT are investigated in Section 3 and
Section 4, respectively. A summary of all results and future work are described
in Section 5.

2 Preliminaries

This section provides the precise definitions of density, measurability and local
varieties of regular languages. REGA denotes the family of all regular languages
over an alphabet A. We assume that the reader has a standard knowledge of
automata theory including the concept of syntactic monoids (cf. [8]).

2.1 Density of formal languages

For a set X, we denote by #(X) the cardinality of X. We denote by N and Z the
set of natural numbers including 0 and the set of integers, respectively. For an
alphabet A, we denote the set of all words (all non-empty words, respectively)
over A by A∗ (A+, respectively). We write |w| for the length of w and A≤n for
the set of all words of length less than or equal to n. For a word w ∈ A∗ and a



letter a ∈ A, |w|a denotes the number of occurrences of a in w. We denote by
alph(w) = {a | |w|a > 0} the set of all letters contained in w. A word v is said to
be a subword of a word w if w = xvy for some x, y ∈ A∗. For a language L ⊆ A∗,
we denote by L = A∗ \L the complement of L. A language L is said to be dense
if L ∩ A∗wA∗ 6= ∅ holds for any w ∈ A∗. L is not dense means L ∩ A∗wA∗ = ∅
for some word w by definition, and such word w is called a forbidden word of L.

Definition 1 (cf. [2]). The density δA(L) of L ⊆ A∗ is defined as

δA(L) = lim
n→∞

1

n

n−1∑
k=0

#
(
L ∩Ak

)
#(Ak)

if its exists, otherwise we write δA(L) = ⊥. L is called null if δA(L) = 0, and
conversely L is called co-null if δA(L) = 1.

Example 1. It is known that every regular language has a rational density (cf. [16])
and it is computable. Here we explain two examples of (co-)null languages.

(1) For each word w, the language A∗wA∗, the set of all words that contain w
as a subword, is of density 1 (co-null). This fact is sometimes called infinite
monkey theorem. A language L having a forbidden word w is always null:
this means A∗wA∗ ⊆ L and δA(A∗wA∗) ≤ δA(L) which implies δA(L) = 1
by infinite monkey theorem.

(2) The semi-Dyck language D = {ε, ab, aabb, abab, aaabbb, . . .} over A = {a, b}
is dense but null. This follows from the fact that #

(
D ∩A2n

)
equals the

n-th Catalan number whose asymptotic formula is Θ(4n/n3/2).

As explained above, “dense” does not imply “not null”. But these two notions
are equivalent for regular languages as the following theorem says. We denote
by ZOA the family of all null or co-null regular languages over A (ZO stands for
“zero-one”).

Theorem 1 (cf. [16]). A regular language L is not null if and only if L is dense.

2.2 Measurability of formal languages

The notion of “measurability” on formal languages is defined by a standard
measure theoretic approach as follows.

Definition 2 ([21]). Let CA be a family of languages over A. For a language
L ⊆ A∗, we define its CA-inner-density µCA

(L) and CA-outer-density µCA(L)

over A as

µCA
(L) = sup{δA(K) | K ⊆ L,K ∈ CA, δA(K) 6= ⊥} and

µCA(L) = inf{δA(K) | L ⊆ K,K ∈ CA, δA(K) 6= ⊥}, respectively.

A language L is said to be CA-measurable if µCA
(L) = µCA(L) holds. We say

that an infinite sequence (Ln)n of languages over A converges to L from inner
(from outer, respectively) if Ln ⊆ L (Ln ⊇ L, respectively) for each n and
limn→∞ δA(Ln) = δA(L).



Example 2 ([21]). The semi-Dyck language D = {ε, ab, aabb, abab, aaabbb, . . .}
over A = {a, b} is REG-measurable. We notice that there is no regular language
L such that δA(L) = 0 and D ⊆ L, since any null regular language has a
forbidden word but D has no forbidden word. Hence we should construct an
infinite sequence (Lk)k of different regular languages that converges to D from
outer. This can be done by letting Lk = {w ∈ A∗ | |w|a = |w|b mod k}. Clearly,
D ⊆ Lk holds and it can be shown that δA(Lk) = 1/k holds. Hence δA(Lk) tends
to zero if k tends to infinity. We will see this type of languages Lk again in the
next section.

For a family CA of languages over A, we define its Carathéodory extension
and regular extension as ExtA(CA) = {L ⊆ A∗ | L is CA-measurable} and
RExtA(CA) = ExtA(CA) ∩ REGA, respectively. We say that “CA has a stronger
measuring power than DA” if ExtA(CA) ⊇ ExtA(DA) holds.

Theorem 2 ([22]). Let CA ⊆ REGA be a family of regular languages over
A. Then L ∈ REGA is CA-measurable if and only if L satisfies the following
Carathéodory’s condition:

∀X ⊆ A∗ µCA(X) = µCA(X ∩ L) + µCA(X ∩ L).

Moreover, this is equivalent to µCA(L) + µCA(L) = 1 (the case X = A∗ in the
above condition).

2.3 Fragments of Star-Free Languages

In this paper we examine measuring power of several subclasses of star-free
languages equipping rich closure properties. For a family CA of languages over
A, we denote by BCA the Boolean closure of CA. Then the class LTA of all locally
testable languages can be defined as LTA = B{wA∗, A∗w,A∗wA∗ | w ∈ A∗}. A
family of regular languages over A is called local variety [1] over A if it is closed
under Boolean operations and left-and-right quotients. The reason why we focus
on this type of families is that, the notion of measurability is well-behaved on
Boolean operations and quotients as the following theorem says.

Theorem 3 ([22]). ExtA is a closure operator, i.e., it satisfies the following
three properties for each C ⊆ D ⊆ 2A

∗
: (extensive) C ⊆ ExtA(C), (monotone)

ExtA(C) ⊆ ExtA(D), and (idempotent) ExtA(ExtA(C)) = ExtA(C). Moreover,
RExtA is a closure operator over the class of all local varieties of regular lan-
guages over A, i.e., CA-measurability is preserved under Boolean operations and
quotients for any local variety CA.

Example 3. By Theorem 1, for any regular language L in ZOA, L or its comple-
ment has a forbidden word, which implies ∅ ⊆ L ⊆ A∗wA∗ or A∗wA∗ ⊆ L ⊆ A∗.
This fact and infinite monkey theorem implies that ZOA ⊆ RExtA(B{A∗wA∗ |
w ∈ A∗}) holds. On the other hand, B{A∗wA∗ | w ∈ A∗} ⊆ ZOA holds because
ZOA forms a local variety (cf. [20]). Moreover, it was shown that RExtA(ZOA) =



ZOA in [22]. By combining these facts with Theorem 3 we have the following
chain of inclusion: ZOA ⊆ RExtA(B{A∗wA∗ | w ∈ A∗}) ⊆ RExtA(ZOA) = ZOA

where the second inclusion ⊆ follows from the monotonicity of RExtA.

The corresponding notion of a family of finite monoids is called local pseu-
dovariety [1], and there is a natural one-to-one correspondence between the class
of all local varieties and the class of all local pseudovarieties [7]. The class SFA

of all star-free languages over A forms a local variety and its corresponding local
pseudovariety is the class of all aperiodic monoids [18]. Thanks to Theorem 3,
the regular extension RExtA(SFA) of star-free languages is also a local variety.
The following theorem says that RExtA extends SFA non-trivially, while it does
not for ZOA.

Theorem 4 ([22]). SFA ( RExtA(SFA) ( REGA if #(A) ≥ 2.

The class LTA of all locally testable languages over A is also a local variety.
We use this algebraic characterisation of LTA in the next section, hence we give
a precise definition here. An element e of a monoid M is called idempotent if
e2 = e holds. For each idempotent e ∈ M , eMe is a submonoid of M with
the identity e and it is called local monoid in M (cf. [8]). A monoid M is said
to be locally idempotent and commutative if, for each idempotent e ∈ M , the
local monoid eMe only contains idempotents and the multiplication on eMe is
commutative (x, y ∈ eMe ⇒ x2 = x and xy = yx). The characterisation given
in [9,24,4] says that L is locally testable if and only if its syntactic semigroup is
locally idempotent and commutative (see the full version [23] for more details).

We end this section by giving precise definitions of three additional sub-
classes of star-free languages. We denote by ATA the Boolean combination of
languages of the form B∗ where B ⊆ A (AT stands for “alphabet testable”,
cf. [15]). This class also can be represented as ATA = B{A∗aA∗ | a ∈ A} and
hence ATA ( LTA. ATA forms a (finite) local variety, and its corresponding lo-
cal pseudovariety is idempotent and commutative monoids (cf. [6]). Clearly, the
density of every language in ATA is either zero or one, thus we have ATA ⊆ ZOA.
A language L is called monomial if it is of the form A∗0a1A

∗
1a2A

∗
2 · · ·A∗n−1anA∗n

where each ai ∈ A,Ai ⊆ A and n ≥ 0. A monomial defined above is said to
be simple if Ai = A for each i. For w = a1a2 · · · an we denote by Lw the sim-
ple monomial A∗a1A

∗a2A
∗ · · ·A∗anA∗. A language is called piecewise testable

if it can be represented as a finite Boolean combination of simple monomials.
The class PTA of all piecewise testable languages over A forms a local vari-
ety. The corresponding local pseudovariety of PTA is the class of all J -trivial
monoids [19]. A monomial L = A∗0a1A

∗
1 · · · anA∗n is unambiguous if for all w ∈ L

there exists exactly one factorisation w = w0a1w1 · · · anwn where each i satis-
fies wi ∈ A∗i . A language is an unambiguous polynomial if it is a finite disjoint
union of unambiguous monomials. The family UPolA of all unambiguous poly-
nomials over A forms a local variety [17]. In particular, the complement of an
unambiguous polynomial is also an unambiguous polynomial. This fact plays a
key role in the next section. By definition we have the following chain of in-
clusion ATA ( PTA ( UPolA ( SFA and every inclusion is strict. We also



notice that PTA (UPolA, respectively) and LTA are incomparable. For example,
A∗abaA∗ ∈ LTA \ PTA (because the syntactic monoid of A∗abaA∗ is not J -
trivial) and Laba = A∗aA∗bA∗aA∗ ∈ PTA \ LTA (because the syntactic monoid
of Laba is not locally idempotent). Every J -trivial finite monoid has a zero el-
ement, and a language whose syntactic monoid has a zero is of density zero or
one (cf. [20]), thus we have PTA ( ZOA.

3 Measuring Power of Locally Testable Languages

In this section we examine the measuring power of locally testable languages:
what kind of languages are LTA-measurable and what are not? First we show
there are “many” LTA-measurable languages.

Proposition 1. For any language L ⊆ A∗, A∗LA∗ is LTA-measurable.

Proof. If L = ∅ then A∗LA∗ = ∅ is in LTA. If L 6= ∅, we can choose w ∈ L
and the ideal language A∗wA∗ ⊆ A∗LA∗ is co-null by infinite monkey theorem.
Hence µ

LTA
(A∗LA∗) = 1 i.e., A∗LA∗ ∈ ExtA(LTA). ut

If A contains two distinct letters a and b, then the subword relation x v y (⇔
“x is a subword of y”) has an infinite antichain in A∗, e.g., {abna | n ≥ 0}.
Two different subsets L1 and L2 of this infinite antichain produce two different
languages A∗L1A

∗ and A∗L2A
∗. Hence the above theorem implies there are un-

countably many LTA-measurable languages. In fact, in [22], a stronger statement
was shown as follows1.

Theorem 5 ([22]). For any real number α ∈ [0, 1] there is a LTA-measurable
language with density α if #(A) ≥ 2.

Next we show that languages with modulo counting, which were used for
the convergent sequence to the semi-Dyck language in Example 2, are LTA-
immeasurable.

Proposition 2. The language Lk = {w ∈ A∗ | |w|a = |w|b mod k} over A =
{a, b} is LTA-immeasurable for any k ≥ 2.

Proof. We show that any non-null locally testable language contains some words
in Lk and Lk. Suppose L ∈ LTA is non-null (δA(L) > 0) and let ML and
η : A∗ →ML be its syntactic monoid and morphism, and let S = η(L).

Let K ⊆ML be the minimal ideal of ML. We can easily obtain δA(η−1(K)) =
1 as a corollary of the infinite monkey theorem. Hence the assumption δA(L) > 0
implies that there is some t ∈ K ∩ S.

Let e be an idempotent in ML (since ML is finite, there is at least one
idempotent) and we ∈ η−1(e) be a word of e. Without loss of generality, we

1 [22] considered REGA-measurability instead of LTA-measurability, but the conver-
gent sequence constructed in the proof of Theorem 5 is actually a sequence of locally
testable languages



can assume |we|a ≥ |we|b. Let n = |we|a − |we|b ≥ 0, u = web
2nawe and v =

web
2n+1we. By construction, |u|a − |u|b = 1 and |v|b − |v|a = 1 holds. By the

minimality of K, there exist x and y such that η(xuvy) = t. Because ML is
locally idempotent, η(u), η(v) ∈ eMLe are both idempotent. This fact implies
that, for any i, j ≥ 1, xuivjy is in L because

η(xuivjy) = η(x)η(u)iη(v)jη(y) = η(x)η(u)η(v)η(y) = η(xuvy) = t

holds. Thus for any m ∈ Z, we can choose i, j ≥ 1 such that |xuivjy|a −
|xuivjy|b = m. Hence L contains words in Lk and Lk simultaneously, which
implies µ

LTA
(Lk) = 0 and µLTA

(Lk) = 1, i.e., Lk is LTA-immeasurable. ut

The next theorem says that LTA has a stronger measuring power than UPolA.

Theorem 6. ExtA(LTA) ⊇ ExtA(UPolA) for any A.

We use the following simple lemma for proving this theorem.

Lemma 1. The concatenation LK of two null regular languages L and K is
also null.

Proof. By Theorem 1, L and K have some forbidden words u, v ∈ A∗, i.e.,
L ⊆ A∗uA∗ and K ⊆ A∗vA∗. Then uv is a forbidden word of LK as follows. For
any word w ∈ A∗uvA∗ and any factorisation w = xy, either x contains u or y
contains v as a subword. This means x /∈ L or y /∈ K, thus w is not in LK. ut

One might think that the above lemma is also true for non-regular languages,
but it is false. Consider a language Lsq = {w ∈ A∗ | |w| = n2 for some n ≥ 0}.
This language Lsq is null, because almost every natural number is not square.
However, by Lagrange’s four square theorem stating that every natural number
can be represented as the sum of four integer squares, we have L4

sq = A∗ which
is clearly co-null.

Proof (of Theorem 6). By the monotonicity and idempotency of ExtA (Theo-
rem 3), it is enough to show UPolA ⊆ ExtA(LTA): this implies ExtA(UPolA) ⊆
ExtA(ExtA(LTA)) = ExtA(LTA). Let L =

⊎k
i=1Mi be an unambiguous polyno-

mial where each Mi is an unambiguous monomial and ] represents the disjoint
union.

We show that, for each monomial Mi, µLTA
(Mi) = δA(Mi) holds, i.e., we

can construct a convergent sequence (Li,j)j of locally testable languages to Mi

from inner : Li,j ⊆ Mi for each j and limj→∞ δA(Li,j) = δA(Mi). If Mi is null,
then clearly we can take Li,j = ∅ for each j. Hence we assume Mi is not null.
In this case, Mi should be of the form Mi = A∗0a1A

∗
1 · · ·A∗n−1anA∗n and (F)

there is a unique ` satisfying A` = A. We show (F). Notice that at least one `
satisfies A` = A, because if not every A∗` and every a` is clearly null and hence
these concatenation Mi is also null by Lemma 1. Suppose there are two ` < `′



with A` = A`′ = A. In this case the word (a1 · · · an)2 ∈ Mi has two different
factorisations:

(ε, a1, . . . , a`, a`+1 · · · ana1 · · · a`︸ ︷︷ ︸
A∗`

, a`+1, . . . , a`′ , ε︸︷︷︸
A∗

`′

, a`′+1, . . . , an, ε)

(ε, a1, . . . , a`, ε︸︷︷︸
A∗`

, a`+1, . . . , a`′ , a`′+1 · · · ana1 · · · a`′︸ ︷︷ ︸
A∗

`′

, a`′+1, . . . , an, ε)

This contradicts with the unambiguity of Mi. Hence (F) is true and we can write
Mi = PA∗S where P = A∗0a1A

∗
1 · · ·A∗`−1a` and S = a`+1A

∗
`+1 · · ·A∗n−1anA∗n.

BecauseMi is unambiguous, for each word w ∈Mi, there is a unique factorisation
w = xyz where x ∈ P , y ∈ A∗ and z ∈ S, respectively. Hence, for any n ≥ 0, we
have

#(Mi ∩An)

#(An)
=

#({(x, y, z) ∈ P ×A∗ × S | |xyz| = n})
#(An)

=
#
(⊎

(x,z)∈Un
xA∗z ∩An

)
#(An)

=

∑
(x,z)∈Un

#(xA∗z ∩An)

#(An)
=

∑
(x,z)∈Un

#(A)
−|xz|

(1)

holds where Un =
{

(x, z) ∈ P × S | |x| + |z| ≤ n
}
. Because the sequence

(#(Mi ∩An) /#(An))n is bounded above by 1 and non-decreasing, the limit of
(1) exists, say limn→∞ (1) = α. In general, if a sequence converges to some value,
then its average also converges to the same value. Hence we have δA(Mi) = α.
For each j ∈ N, the language Li,j =

⋃
(x,z)∈Uj

xA∗z is locally testable, because

(i) for each x, z ∈ A∗, xA∗z = (xA∗ ∩ A∗z) \ {w ∈ A∗ | |w| < |x| + |z|}
is locally testable, and (ii) Uj is finite. Moreover, Li,j ⊆ Mi for each j and

δA(Li,j) =
∑

(x,z)∈Uj
#(A)

−|xz|
. Hence limj→∞ δA(Li,j) = α = δA(Mi), i.e.,

µ
LTA

(Mi) = δA(Mi). This fact implies that µ
LTA

(L) = δA(L) because we have

the following equality:

µ
LTA

(L) = µ
LTA

(
k⊎

i=1

Mi

)
=

k∑
i=1

µ
LTA

(Mi) =

k∑
i=1

δA(Mi) = δA(L).

Next we show µ
LTA

(L) = δA(L). Notice that the complement of L is also an

unambiguous polynomial since UPolA is a local variety. Thus L =
⊎k′

i=1M
′
i holds

for some unambiguous monomials M ′i . Hence we can conclude that µ
LTA

(L) =

δA(L) = 1−δA(L) which implies µ
LTA

(L)+µ
LTA

(L) = 1. Because LTA is closed

under complementation, we have µ
LTA

(K) = 1 − µLTA
(K) for any K. Thus

µLTA
(L) + µLTA

(L) = 1, i.e., L is LTA-measurable by Theorem 2. ut

Next we show the reverse inclusion of Theorem 6. This direction is more easy.



Theorem 7. ExtA(UPolA) ⊇ ExtA(LTA) for any A.

Proof. By the monotonicity and idempotency of ExtA (Theorem 3), this is equiv-
alent to LTA ⊆ ExtA(UPolA). Moreover, UPolA-measurability is preserved un-
der Boolean operations by Theorem 3, we only have to show that wA∗, A∗w and
A∗wA∗ are all UPolA-measurable for each w ∈ A∗. Let w = a1 · · · an where each
ai ∈ A.

First we show wA∗ ∈ ExtA(UPolA). This is easy because the language wA∗ =
∅∗a1∅∗a2∅∗ · · · ∅∗anA∗ itself is actually an unambiguous polynomial. Similarly,
we also have A∗w ∈ UPolA.

Next we show A∗wA∗ ∈ ExtA(UPolA). This language is not in UPolA in
general. For example, A∗abA∗ is not an unambiguous polynomial if A = {a, b, c}
(cf. [6]). Since the case w = ε is trivial, we assume w = a1 · · · an where ai ∈ A and
n ≥ 1. Define Wk = (Ak\Kk)wA∗ where Kk = {u ∈ Ak | ua1 · · · an−1 ∈ A∗wA∗}
for each k ≥ 0. Intuitively, Wk is the set of all words in which w firstly appears
at the position k + 1 as a subword. Wk is in UPolA for each k, because it can
be written as Wk =

⊎
v∈(Ak\Kk)

vwA∗, where each vwA∗ is an unambiguous
polynomial as shown above, which means that this disjoint finite union Wk is
also an unambiguous polynomial. Clearly, Wi∩Wj = ∅ and δA(Wi) > 0 for each

i 6= j, thus we have
⊎

k≥0Wk = A∗wA∗ and hence limn→∞ δA

(⊎n
k≥0Wk

)
= 1

i.e., µ
UPolA

(A∗wA∗) = 1. Thus A∗wA∗ ∈ ExtA(UPolA). ut

Combining Theorem 6 and Theorem 7, we have the following equivalence.

Corollary 1. ExtA(LTA) = ExtA(UPolA) for each A.

We showed that LTA has a certain measuring power, but yet we do not know
whether LTA-measurability on REGA is decidable or not. We only know that
RExtA(LTA) forms a local variety thanks to Theorem 3.

4 Measuring Power of Alphabet and Piecewise Testable
Languages

For any alphabet A, ATA is a finite family of regular languages, hence we can
decide, for a given regular language L ⊆ A∗, whether L is ATA-measurable or
not: enumerate every pair (L1, L2) of languages in ATA and check L1 ⊆ L ⊆ L2

and δA(L1) = δA(L2) = δA(L) holds. But the next theorem gives us a more
simpler way to check ATA-measurability than this näıve approach.

Theorem 8. A co-null language L ⊆ A∗ is ATA-measurable if and only if L
contains

⋂
a∈AA

∗aA∗.

Proof. Clearly,
⋂

a∈AA
∗aA∗ ∈ ATA and δA(

⋂
a∈AA

∗aA∗) = 1 holds. Thus
any language L ⊇

⋂
a∈AA

∗aA∗ is ATA-measurable. If L 6⊇
⋂

a∈AA
∗aA∗, then

any subset of L in ATA is null, because every language in ATA not containing⋂
a∈AA

∗aA∗ is a subset of
⋃

B(AB
∗ and hence it is clearly null. ut



We notice that the above theorem also gives a characterisation of null ATA-
measurable languages: because ATA is closed under complementation, L is ATA-
measurable if and only if L is ATA-measurable by Theorem 2. Hence a null
language L ⊆ A∗ is ATA-measurable if and only if L contains

⋂
a∈AA

∗aA∗. The
latter condition is equivalent to the following: alph(w) 6= A for any w ∈ L.

Next we give a simple different characterisation of PT-measurability. The
following lemma can be considered as a specialised version of Theorem 1 (a
regular language is co-null if and only if it contains an ideal language A∗wA∗)
to piecewise testable languages. Notice that A∗wA∗ ⊆ Lw always holds hence
Lw is more “larger” than A∗wA∗.

Lemma 2. A piecewise testable language L ∈ PTA is co-null if and only if it
contains a simple monomial.

Proof. (⇐:) this is trivial: every simple monomial Lw is co-null by infinite mon-
key theorem.
(⇒:) Let L ∈ PTA be a co-null piecewise testable language. By definition of
PTA, L can be written as a finite Boolean combination of simple monomials,
hence it can be written as a disjunctive normal form L = I1 ∪ · · · ∪ In where
n ≥ 1 and each Ii is the intersection of some simple monomials or complements
of simple monomials. δA(L) = 1 implies that, at least one Ii is the intersection of
some simple monomials (otherwise δA(L) = 0), say Ii = Lw1

∩ · · · ∩ Lwk
. Hence

we can conclude that L contains a simple monomial Lw1···wk
⊆ Ii ⊆ L. ut

Theorem 9. A co-null language L ⊆ A∗ is PTA-measurable if and only if Lw ⊆
L holds for some w ∈ A∗.

Proof. (⇐): trivial.
(⇒): L is PTA-measurable means there is a convergent sequence (Lk)k of piece-
wise testable languages to L from inner. This means that, for some i ≥ 0,
δA(Lj) = 1 holds for any j ≥ i because the density of each Lk is either zero or
one. By Lemma 2, Lj contains a simple monomial Lwj

for each j ≥ i. Hence
Lwi
⊆ Li ⊆ L, in particular. ut

We notice that the above theorem also gives a characterisation of null PTA-
measurable languages: because PTA is closed under complementation, L is PTA-
measurable if and only if L is PTA-measurable by Theorem 2. By using Lemma 2,
we can also show that the measuring power of PTA is strictly weaker than ZOA

as follows.

Theorem 10. PTA ( RExtA(PTA) ( ZOA if #(A) ≥ 2.

Proof. PTA ( RExtA(PTA) follows from the fact that any regular language L ⊆
B∗ is in RExtA(PTA) for B ( A. Also, we have RExtA(PTA) ⊆ RExtA(ZOA) =
ZOA because PTA ⊆ ZOA holds. Hence it is enough to show RExtA(PTA) 6=
ZOA.

We show A∗wA∗ 6∈ ExtA(PTA) for any w ∈ A∗ with |w| ≥ 3. Let L ∈ PTA

be a co-null piecewise testable language. By Lemma 2, there exists some word u



such that Lu ⊆ L. We now show that there exits v ∈ Lu such that v /∈ A∗wA∗
which implies L 6⊆ A∗wA∗. Let u = a1 · · · a` where ai ∈ A for each i, and
let w = w′b1b2b3 where w′ ∈ A∗, bj ∈ A for each j. If ` ≤ 2, it is clear that
Lu 3 a1 · · · a` 6∈ A∗wA∗ because |w| ≥ 3. Hence we consider the case ` ≥ 3. We
perform case analysis of #(A).
(Case #(A) ≥ 3): Let v1 = a1. We choose vi in order from i = 2 to ` as follows:
(1) if |v1v2 · · · vi−1| ≥ |w| and the suffix of v1v2 · · · vi−1ai of length |w| equals w
(ai = b3 in this case), then put vi = aai where a ∈ (A \ {b2, b3}). (2) otherwise,
put vi = ai.
(Case #(A) = 2): This case is a bit more involved. Let A = {a, b} and let
v1 = ab. We choose vi in order from i = 2 to ` as follows: (1) if b1b2b3 ∈
{aaa, aab, abb, baa, bba, bbb}, then put vi = ab. (2) if b1b2b3 ∈ {aba, bab}, then put
vi = baab. Observe that the each suffix of vi of length 2 is ab, hence v1 · · · v` ∈ Lu′

for any u′ ∈ A`. Also, one can easily observe that no subword of vivi+1 equals
to b1b2b3 for each 1 ≤ i ≤ `− 1.

In both cases, by construction, no subword of v = v1 · · · v` equals to w and
v ∈ Lu. Thus only a null piecewise testable language can be a subset of A∗wA∗,
hence µ

PTA
(A∗wA∗) = 0, i.e., A∗wA∗ /∈ ExtA(PTA). ut

Finally, we give an algebraic characterisation of PTA-measurability based on
Theorem 9. We notice that the syntactic monoid of every co-null regular language
has the zero element 0 (cf. [20]). We use Green’s J -relation =J and <J on a
monoid M defined by x =J y ⇔MxM = MyM and x <J y ⇔MxM (MyM ,
respectively (cf. [8]).

Theorem 11. A co-null regular language L ⊆ A∗ is PTA-measurable if and
only if (♦) for every x ∈M \ {0} there is a letter a ∈ A such that x′η(a) <J x

′

for every x′ =J x, where η : A∗ → M and M is the syntactic morphism and
monoid of L, respectively.

Proof. It is clear that 0 is the minimum element of M with respect to <J . Also,
we have 0 ∈ η(L) by infinite monkey theorem. We write [x] for the J -class of x.
(⇐): Assume (♦). Let |M/=J | = n and let [x1], . . . , [xn] be a sequence of J -
classes of M such that (1) for every x ∈M there is i such that x ∈ [xi], and (2)
for every i < j either xi >J xj or xi and xj are incomparable with respect to
<J . By the assumption, for each J -class [xi] where i 6= n (xn = 0 by definition),
there is a letter ai ∈ A such that x′η(ai) <J x′ for every x′ ∈ [xi]. Define w =
a1 · · · an−1. By construction, it is clear that, for every w0, w1, . . . , wn−1 ∈ A∗,
we have η(w0a1w1a2 · · ·wn−2an−1wn−1) = 0. Hence η(Lw) = {0}, that is, we
obtain Lw ⊆ L. This means that L is PTA-measurable by Theorem 9.
(⇒): Assume the contrary of (♦). For any w = a1 · · · ak ∈ A∗, we show that
Lw 6⊆ L holds. This implies that L is PTA-immeasurable by Theorem 9. By the
assumption, there is y ∈M \ {0} such that, for each letter ai, yiη(ai) =J yi for
some yi ∈ [y]. yiη(ai) =J yi =J y means that there is a pair (xi, zi) such that
xiyiη(ai)zi = y. Also, for each yi ∈ [y], there is a pair (x′i, z

′
i) such that x′iyz

′
i = yi.

For each i, let ui ∈ η−1(xi), vi ∈ η−1(yi), wi ∈ η−1(zi) and u′i ∈ η−1(x′i), w
′
i ∈

η−1(z′i). Define t1 = u1v1a1w1 and ti = uiu
′
iti−1w

′
iaiwi for each 2 ≤ i ≤ k. By



Language Algebra Logic Measurability

SF aperiodic FO SF ( RExtA(SF) ( REG [22]

LT locally idempotent
and commutative

ExtA(LT) = ExtA(UPol)

UPol DA FO2

PT J -trivial BΣ1

PT ( RExtA(PT) ( ZO

L is PT-measurable iff L or L
contains a simple monomial

AT idempotent
and commutative

FO1

AT ( RExtA(AT) ( RExtA(PT)

L is AT-measurable iff L or L
contains

⋂
a∈A A∗aA∗

Table 1. Correspondence of language-algebra-logic and summary of our results.

straightforward induction, we can show that η(ti) = y holds for every 1 ≤ i ≤ k.
It also clear that tk ∈ Lw. Because y 6= 0, there is some x, z ∈ M such that
xyz /∈ η(L) (if not y = 0 holds by the definition of the syntactic monoid of L).
This means that Lw 3 wxtkwz /∈ L where wx ∈ η−1(x), wz ∈ η−1(z). Hence we
obtain Lw 6⊆ L. ut

Because the syntactic monoid of every regular language is finite, the condition
(♦) is decidable.

Corollary 2. PTA-measurability is decidable for REGA.

5 Summary and Future Work

For simplicity, in this section we only consider alphabets with two more letters,
and omit the subscript A for denoting local varieties. Table 1 shows algebraic and
logical counterparts of local varieties we considered (left) and a summary of our
results (right). Here FOn stands for first-order logic with n-variables and BΣ1

is the Boolean closure of existential first-order logic. The hierarchy of languages
is strictly decreasing top down excluding that LT and UPol (PT, respectively)
are incomparable. All algebraic and logical counterparts in Table 1 are nicely
described in a survey [6], with the sole exception LT [9,24,4].

Our future work are two kinds.

(1) Prove or disprove ExtA(LT) ( ExtA(SF).
(2) Prove or disprove the decidability of LT-measurability.

To show the decidability, perhaps we can use some known techniques related
to locally testable languages, for example, the so-called separation problem for a
language class C: for a given pair of regular languages (L1, L2), is there a language
L in C such that L1 ⊆ L and L∩L2 = ∅ (L “separates” L1 and L2)? It is known



that the separation problem for PT, LT, and SF are all decidable [12,13,14].
Theorem 8 and Theorem 9 says that, AT-measurability and PT-measurability
does not rely on the existence of an infinite convergent sequence, but relies on
the existence of a single language ∩a∈AA∗aA∗ and Lw as a subset, respectively.
But from Theorem 5, we can observe that, the situation of LT-measurability
is essentially different: LT-measurability heavily relies on the existence of an
infinite sequence of different locally testable languages. Because the density of
every regular language is rational (cf. [16]), for each LTA-measurable language
L with an irrational density, there is no single pair of regular languages (L1, L2)
such that L1 ⊆ L ⊆ L2 and δA(L1) = δA(L2) = δA(L).

Between SF and LT, there is a fine-grained infinite hierarchy called the dot-
depth hierarchy originally introduced by Cohen and Brzozowski [5] in 1970. For
a family C of languages, we denote by M C = {L1 · · ·Lk | k ≥ 1, L1, . . . , Lk ∈
C} ∪ {{ε}} the monoid closure of C. The dot-depth hierarchy starts with the
family B0 of all finite or co-finite languages, and continues as Bi+1 = BMBi for
each i ≥ 0. Brzozowski and Knast [3] showed that this infinite hierarchy is strict:
Bi ( Bi+1 for each i ≥ 0. By definition, we have SF =

⋃
i≥0 Bi, and actually,

we also have B0 ( LT ( B1 because each of wA∗, A∗w and A∗wA∗ is obtained
by concatenating a finite language {w} and a co-finite language A∗. Although
the dot-depth hierarchy was introduced in a half-century before and much ink
has been spent on it, the decidability of the membership problem for Bi is open
for i ≥ 3 and the research on this topic is still active: see a survey [11] or a
recent progress given by Place and Zeitoun [15] that shows the decidability of
the separation problem for B2, which implies the decidability of membership of
B2. The equation ExtA(LT) = ExtA(SF) means that the dot-depth hierarchy
collapses via ExtA. But if not, it might be interesting to consider the new hier-
archy B0 = ExtA(B0) ( ExtA(B1) ⊆ ExtA(B2) ⊆ · · · ⊆ ExtA(SF).
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