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Abstract. A language L is said to be regular measurable if there exists
an infinite sequence of regular languages that “converges” to L. In [1], the
author showed that, while many complex context-free languages are reg-
ular measurable, the set of all primitive words and certain deterministic
context-free languages are regular immeasurable. This paper investigates
general properties of measurability, including closure properties, decid-
ability and different characterisation. Further, for a suitable subclass C
of regular languages, we show that the class of all C-measurable regular
languages has a good algebraic structure.

1 Introduction

How can we measure the volume of an object with a very complex shape? If
it can be wet, an easy way is to slowly and completely submerge the object
suspended by a thread in a rectangular tank filed with water, pull it out, and
calculate the amount of water that overflows from the reduced water level. The
amount of water that overflows is needed to “cover” the object, so it will be a
good estimation of the volume of the object. It is a standard way in measure
theory to cover an object X ⊆ Rd with a set Y ⊇ X with good properties, called
a “basic set”, and use the measure of Y as an estimation (from outer) of the
measure of X.

For example, in the case of Lebesgue measure (cf. [2]), we define the length of
an interval I = [a, b], [a, b), (a, b], (a, b) as |I| = b− a, and call the direct product
B = I1× · · · × Id of d intervals as a box (with |B| = |I1| × · · · × |Id|), and regard
a countable union of boxes as a basic set. The Lebesgue outer measure of a set
X ⊆ R is defined as

m∗(X) = inf

{ ∞∑
n=1

|Bn|

∣∣∣∣∣
∞⋃

n=1

Bn ⊇ X;Bn is a box for each n ≥ 1

}
,

i.e., the lower bound on the volume required to cover X by a basic set
⋃∞

n=1Bn.
X is said to be Lebesgue measurable if it satisfies the following so-called
Carathéodory’s condition (where X is the complement of X):

∀S ⊆ Rd m∗(S) = m∗(S ∩X) +m∗(S ∩X).



Actually, for subsets of the set of natural numbers N (3 0), we can apply this
measure theoretic approach. In [3], Buck defines the density of an arithmetic
progression (AP for short) A = {pn+ q | n ∈ N} where p, q ∈ N 1 as d(A) = 1/p
(d(A) = 0 if p = 0), regards a finite union of arithmetic progressions as a basic
set, and defines the outer density of X ⊆ N as

d∗(X) = inf

{
k∑

n=1

d(An)

∣∣∣∣∣
k⋃

n=1

An ⊇ X; k ∈ N, An is an AP for each n ∈ [1, k]

}
.

As like the Lebesgue measurability, X ⊆ N is said to be measurable if it satisfies
the Carathéodory’s condition

∀S ⊆ N d∗(S) = d∗(S ∩X) + d∗(S ∩X),

and Buck called d∗(X) the measure density of X in this case.
Regular measurability (REG-measurability) proposed in [1] is an adoption

of the Buck’s measure density for formal languages: we define the density of a
language L ⊆ A∗, regards a regular language as a basic set, and define the mea-
surability of a language via outer and inner density (precise definition appears
in the next section). The main motivation of [1] is, not just to generalise Buck’s
measure density, but also to tackle a long-standing open problem so-called prim-
itive words conjecture. Some non-trivial partial results can be found in [1], which
we will briefly describe in the next section. Regular measurability is an emer-
gent notion and hence its theory is not well developed yet. In fact, it is fair to
say that very little is known about the class of all regular measurable languages
(regular measurable context-free languages, respectively). This paper investi-
gates fundamental properties of regular measurability (and C-measurability for
a general language class C) like as closure properties, decidability and different
characterisation. Moreover, as a “miniature” of regular measurability, for some
subclass C of regular languages, we investigate C-measurability. While the class
of all regular measurable languages (regular measurable context-free languages)
has a complex structure and it is somewhat hard to analyse, for some suitable
subclass C (called local variety) of regular languages, we will show that the class
of all C-measurable regular languages has a good algebraic structure and more
easier to analyse.
Our contribution and the organisation of the paper
In this paper, all theorems/corollaries without citation are new (as much as we
know), and main results consist of three kinds: (I) Give some new examples
of regular (im)measurable languages (Theorem 5–6, Corollary 1 in Section 2).
(II) Show some closure properties, an undecidability result (modulo a certain
conjecture), and a different characterisation via the Carathéodory’s condition
of C-measurability for a general language class C (Theorem 7–10 in Section 3).
(III) Examine Carathéodory extensions of some local varieties of regular lan-
guages (Theorem 13–16 in Section 4). We also discuss future work and pose few
open problems in Section 5.

1 Here p can be 0 and we call a singleton {q} arithmetic progression in this case.



2 Density and Measurability

This section provides the precise definitions of density and measurability. In
Section 2.3, we briefly describe results in [1], and also give some new examples
of regular measurable/immeasurable languages.

2.1 Density of formal languages

For a set X, we denote by #(X) the cardinality of X. We denote by N the set of
natural numbers including 0. For an alphabet A, we denote the set of all words
(all non-empty words, respectively) over A by A∗ (A+, respectively). For a word
w ∈ A∗ and a letter a ∈ A, |w|a denotes the number of occurrences of a in w.
A word v is said to be a subword of a word w if w = xvy for some x, y ∈ A∗.
For a language L ⊆ A∗, we denote by L = A∗ \ L the complement of L. We say
that L is co-finite if its complement is finite. A language L is said to be dense if
L ∩A∗wA∗ 6= ∅ holds for any w ∈ A∗. L is not dense means L ∩A∗wA∗ = ∅ for
some word w by definition, and such word is called a forbidden word of L.

Definition 1. Let L ⊆ A∗ be a language. The density δ∗A(L) of L over A is
defined as

δ∗A(L) = lim
n→∞

1

n

n−1∑
k=0

#
(
L ∩Ak

)
#(Ak)

if its exists, otherwise we write δ∗A(L) = ⊥ and say that L does not have a density.
L is called null if δ∗A(L) = 0, and conversely L is called co-null if δ∗A(L) = 1.

The following observation is basic. See Chapter 13 of [4] for more details.

Lemma 1. Let K,L ⊆ A∗ with δ∗A(K) = α, δ∗A(L) = β. Then we have:

(1) α ≤ β if K ⊆ L.

(2) δ∗A(L \K) = β − α if K ⊆ L. In particular, δ∗A(K) = δ∗A(A∗ \K) = 1− α.

(3) δ∗A(K ∪ L) ≤ α+ β if δ∗A(K ∪ L) 6= ⊥.

(4) δ∗A(K ∪ L) = α+ β if K ∩ L = ∅.
(5) δ∗A(wK) = δ∗A(Kw) = α/#(A)

|w|
for each w ∈ A+.

Example 1. Here we enumerate a few examples of densities of languages.

(1) Consider (AA)∗ the set of all words with even length. Because #((AA)∗∩An)
#(An)

is 1 if n is even otherwise 0, clearly δ∗A((AA)∗) = 1/2 holds.

(2) For each word w, the language A∗wA∗, i.e., the set of all words that contain
w as a subword, has density 1 (co-null). This fact is sometimes called infinite
monkey theorem. A language L having a forbidden word w is always null;
since A∗wA∗ ⊆ L holds by definition, we have δ∗A(A∗wA∗) ≤ δ∗A(L) which
implies δ∗A(L) = 1 by infinite monkey theorem. Thus L is null.



(3) The following language

L⊥ = {w ∈ A∗ | 3n ≤ |w| < 3n+1 for some even number n}

does not have a density (δ∗A(L⊥) = ⊥). The proof is as follows. The density
of L⊥ is the limit (when n→∞) of the fraction

1

n

n−1∑
i=0

#
(
L⊥ ∩Ai

)
#(Ai)

(1)

if it exists by definition. Consider n = 3k for some even number k and let
0 ≤ α ≤ 1 be the value of the fraction (1) of n = 3k, then the value (1) of
n = 3k+1 satisfies

1

3k+1

3k−1∑
i=0

#
(
L⊥ ∩Ai

)
#(Ai)

+

3k+1−1∑
i=3k

1

 =
1

3k+1
(3kα+ 3k+1 − 3k)

=
α+ 3− 1

3
=
α+ 2

3
≥ 2/3.

Conversely, consider n = 3k for some odd number k and let 0 ≤ β ≤ 1 be
the value (1) of n = 3k, then the value (1) of n = 3k+1 satisfies

1

3k+1

3k−1∑
i=0

#
(
L⊥ ∩Ai

)
#(Ai)

+

3k+1−1∑
i=3k

0

 =
3kβ

3k+1
=
β

3
≤ 1/3.

Hence the value (1) could be larger than 2/3 and smaller than 1/3 infinitely
many times so that δ∗A(L⊥) diverges. ut

Example 1 shows us that, for some language, its density is either zero or
one, for some, like (AA)∗, a density could be a rational number like 1/2, and
for some, like L⊥ a density may not even exist. However, the following theorem
tells us that all regular languages do have densities.

Theorem 1 (cf. Theorem III.6.1 of [5]). Every regular language has a den-
sity and it is rational.

Also, for the class of regular languages, two notions “not null” (a measure
theoretic largeness) and “dense” (a topological largeness) are equivalent.

Theorem 2 ([6]). A regular language L is not null if and only if L is dense.

2.2 C-measurability of formal languages

A language class C is a family of languages {CA}A: finite alphabet where CA ⊆ 2A
∗

for each A and CA ⊆ CB for each A ⊆ B. We simply write L ∈ C if L ∈ CA for
some alphabet A. We denote by REG and CFL the class of regular languages
and context-free languages, respectively.

We now introduce the notion of C-measurability which is a formal language
theoretic analogue of Buck’s measure density [3].



Definition 2 ([1]). Let C be a class of languages. For a language L ⊆ A∗, we
define its C-inner-density µCA

(L) and C-outer-density µCA(L) over A as

µCA
(L) = sup{δ∗A(K) | K ⊆ L,K ∈ CA, δ∗A(K) 6= ⊥},

µCA(L) = inf{δ∗A(K) | L ⊆ K,K ∈ CA, δ∗A(K) 6= ⊥}.

A language L is said to be C-measurable over A if µCA
(L) = µCA(L) holds, and

we simply write µCA(L) as µCA(L) in this case. We say that an infinite sequence
(Ln)n of languages over A converges to L from inner (from outer, respectively)
if Ln ⊆ L (Ln ⊇ L, respectively) for each n and limn→∞ δ∗A(Ln) = δ∗A(L).

Remark 1. Both density and C-measurability depends on the alphabet. For ex-
ample, any language L ⊆ A∗ is of density zero over B ) A. Also, any language
L ⊆ A∗ is REG-measurable over B ) A: clearly ∅ ⊆ L ⊆ (B \ {b})∗ holds
for b ∈ (B \ A) and hence µ

REGB
(L) = µREGB

(L) = 0 ((B \ {b})∗ has a for-

bidden word b hence it is null over B by infinite monkey theorem), i.e.REG-
measurable over B. Hereafter, we mainly consider density and C-measurability
over the minimum alphabet for each language L, i.e., the minimum alphabet
A satisfying L ⊆ A∗. We sometimes omit the subscript of µ

REGA
(L), µREGA

(L)

like µ
REG

(L), µREG(L), and we simply say “L is of density one” or “L is C-
measurable”. In this case the considered alphabet is always the minimum one.

The following basic lemmata will be used in the next section.

Lemma 2 (cf. [1]). Let K,L ⊆ A∗ be two languages.

(1) µCA
(K) ≤ δ∗A(K) ≤ µCA(K) if δ∗A(K) 6= ⊥. In particular, δ∗A(K) = ⊥ implies

K is C-immeasurable.
(2) µCA(K) ≤ µCA(L) if K ⊆ L.
(3) µCA(K ∪ L) ≤ µCA(K) + µCA(L) if C is closed under union.
(4) µCA(K) = δ∗A(K) if K ∈ C and δ∗A(K) 6= ⊥.

Lemma 3 (cf. [1]). Let C be a language class closed under complementation. A
language L ⊆ A∗ is C-measurable if and only if

µCA(L) + µCA(L) = 1. (2)

2.3 Examples of REG-measurable/immeasurable languages

In this subsection we describe several examples of REG-(im)measurable lan-
guages. In [1], it is shown that many complex context-free languages are still
REG-measurable summarised as follows.

Theorem 3 ([1]). Following context-free languages are all non-regular but REG-
measurable.

(1) D = {w ∈ {a, b}∗ | |w|a = |w|b, |u|a ≥ |u|b for every prefix u of w}.
(2) P = {w ∈ {a, b}∗ | w is a palindrome}.



(3) O3 = {w ∈ {a, b, c}∗ | |w|a = |w|b or |w|a = |w|c}.
(4) O4 = {w ∈ {x, x, y, y}∗ | |w|x = |w|x or |w|y = |w|y}.
(5) G = {an1ban2b · · · ankb | k ≥ 1, ni 6= i for each 1 ≤ i ≤ k}.
(6) K = S1{c}A∗ ∪ S2{c}A∗ where A = {a, b, c} and

S1 = {a}{biai | i ≥ 1}∗ S2 = {aib2i | i ≥ 1}∗{a}+.

The semi-Dyck language D and the palindromes P are classical examples of
non-regular languages. Flajolet [7] showed that the language O3 and O4 are
inherently ambiguous. Flajolet also showed that the generating function of G is
not algebraic [8] and thus it is an inherently ambiguous context-free language
due to the well-known Chomsky–Schützenberger theorem [9] stating that the
generating function of every unambiguous context-free language is algebraic. The
language K defined by Kemp [10] is the first example of a context-free language
with transcendental density. While several complex context-free languages like
G or K are REG-measurable, the following theorem says certain deterministic
context-free languages and the set of all primitive words are REG-immeasurable.

Theorem 4 ([1]). The following languages over A = {a, b} are all REG-immeasurable.

(1) Mn = {w ∈ A∗ | |w|a > n · |w|b} for each n ≥ 1.
(2) The set Q of all primitive words. Here w ∈ A+ is said to be primitive if it can

not be represented as a power of any shorter words, i.e., for every v ∈ A+

and n ∈ N, vn = w implies v = w and n = 1.

In particular, the above languages are REG-immeasurable in a strong sense as
follows: µ

REG
(Mn) = µ

REG
(Q) = 0 and µREG(Mn) = µREG(Q) = 1 for each

n ≥ 2.

In [1] the author originally conjectured that there is no context-free language like
Q: if a context-free language L is co-null, then it can be somehow “approximated”
by regular languages from inner, i.e., µ

REG
(L) > 0. If this conjecture was true,

then the primitive words conjecture “Q is not context-free” posed by Dömösi,
Horváth and Ito [11] was true, too. However, the author found a counterexample
M2 and hence this näıve approach did not work (still, this approach has some
possibility, see the last section of [1] for details).

Now we give three new examples of REG-(im)measurable languages. The
following indexed language is not context-free, but REG-measurable.

Theorem 5. Lexp = {a2n | n ∈ N} is REG-measurable over A = {a}.

Proof. Clearly, δ∗A(Lexp) = 0 holds hence it is enough to construct a sequence
of regular languages that converges to Lexp from outer. For each k ≥ 1, a
regular language Lk = (ak)∗ ∪ {an | 0 < n < k} satisfies δ∗A(Lk) = 1/k
(limk→∞ δ∗A(Lk) = 0, in particular). We show that a2n ∈ L2k holds for each
k ≥ 1 and n ∈ N (i.e., Lexp ⊆ L2k). The case 2n < 2k is clear by definition
thus consider the case 2n ≥ 2k. In this case, 2n = 2k · 2n−k holds hence a2n

is the 2n−k times repetition of a2k

which means a2n ∈ (a2k

)∗ ⊆ L2k . Thus the
sequence (L2k)k≥1 converges to Lexp from outer. ut



The next theorem tells us that REG-measurable languages exist for each real
number between 0 and 1.

Theorem 6. Let A be an alphabet including at least two letters. For each real
number 0 ≤ α ≤ 1, there exists a REG-measurable language L over A with
density exactly α.

Proof. Proof. Consider the case A = {a, b} (a general case can be shown simi-
larly). Let (αn)n≥1 (where each αi ∈ {0, 1}) be the binary expansion of α ∈ [0, 1]:
α =

∑∞
n=1 αn2−n. Define K0 = ∅,M0 = A∗ and define Kn,Mn inductively as

follows:

Kn =

{
bn−1aA∗ ∪Kn−1 αn = 1

Kn−1 αn = 0
Mn =

{
Mn−1 αn = 1

Mn−1 \ bn−1aA∗ αn = 0

Clearly, Kn and Mn are regular and Kn ⊆ Kn+1 ⊆ Mn+1 ⊆ Mn holds for each
n. We have bn−1aA∗ ∩ bm−1aA∗ = ∅ for each n 6= m, and δ∗A(bn−1aA∗) = 2−n

by Lemma 1-(5). Hence by using Lemma 1-(2) and (2) we can conclude that

δ∗A(Kn) =

n∑
i=1

αn2−n δ∗A(Mn) = 1−
n∑

i=1

(1− αn)2−n

holds. Thus (Kn,Mn)n converges to the limit language L =
⋃

n∈NKn =
⋂

n∈NMn

whose density is δ∗A(L) = limn→∞ δ∗A(Kn) = limn→∞ δ∗A(Mn) = α. ut

Finally, by Lemma 2-(1) we have the following REG-immeasurable language.

Corollary 1. L⊥ defined in Example 1-(3) is REG-immeasurable.

3 Closure Properties and Carathéodory’s Condition

In this section we investigate general properties of C-measurability. First we
show that C-measurability is closed under Boolean operations and left-and-right
quotients, with some density condition. This fact plays important role in the
next section.

Theorem 7. Let C be a language class closed under Boolean operations. If L,K
are C-measurable, and if every language obtained by a finite Boolean combination
of languages in C∪{L,K} has a density, then the complement L, the union L∪K
and the intersection L ∩K are also C-measurable.

Proof. C is closed under Boolean operations by assumption, thus a language L
is C-measurable if and only if L is C-measurable by Lemma 3. Thus it is enough
to show that L ∪K is C-measurable if L and K are. Let (Ln)n and (Kn)n are
convergent sequence from inner to L and K, respectively. Since C is closed under
taking union, (Ln ∪ Kn)n is a sequence of languages in C. We show that this
sequence converges to L∪K from inner. For any ε/2 > 0 there exists δ such that



δ∗A(L)− δ∗A(Ln), δ∗A(K)− δ∗A(Kn) < ε/2 for each n > δ, thus by Lemma 1-(2) we
have

(δ∗A(L)− δ∗A(Ln)) + (δ∗A(K)− δ∗A(Kn)) = δ∗A(L \ Ln) + δ∗A(K \Kn) < ε.

By assumption, (L \Ln)∪ (K \Kn) has a density, hence by the subadditivity of
δ∗A (Lemma 1-(3))

δ∗A((L \ Ln) ∪ (K \Kn)) ≤ δ∗A(L \ Ln) + δ∗A(K \Kn) < ε

holds. Clearly, (L ∪ K) \ (Ln ∪ Kn) ⊆ (L \ Ln) ∪ (K \ Kn) holds and hence
δ∗A((L∪K) \ (Ln ∪Kn)) < ε, which means that (Ln ∪Kn)n converges to L∪K
from inner. We can also construct an convergent sequence to L ∪K from outer
in the same way. ut

Theorem 8. Let C be a language class closed under left quotients (right quo-
tients, respectively). If L is C-measurable, and if the left quotient a−1L (the right
quotient La−1, respectively) has a density, then it is also C-measurable.

Proof. For a C-measurable language L over A, we show that a−1L is also C-
measurable (La−1 can be shown by the same way). By definition, there is a
convergent sequence (Kn,Mn)n to L. We show that (a−1Kn, a

−1Mn)n converges
to a−1L.

For simplicity, we consider the case A = {a, b} (a general case can be shown
similarly). For each a ∈ A we have L ∩ aA∗ = aa−1L and hence L can be
written as L = aa−1L ∪ bb−1L ∪ (L ∩ {ε}). By assumption aa−1L and bb−1L
have density. Because aa−1L and bb−1L are mutually disjoint, by the additivity
of δ∗A (Lemma 1-(4)) we have

δ∗A(L) = δ∗A(aa−1L) + δ∗A(bb−1L). (3)

Kn ⊆ L holds for each n hence we have a−1Kn ⊆ a−1L and δ∗A(a−1Kn) ≤
δ∗A(a−1L). Because (Kn)n is a convergent sequence to L from inner, for any
ε/2 > 0 there exists δ such that δ∗A(L) − δ∗A(Kn) < ε/2 holds for every n > δ.
Thus from Equality (3) we can deduce that

δ∗A(L)− δ∗A(Kn) = δ∗A(aa−1L)− δ∗A(aa−1Kn) + δ∗A(bb−1L)− δ∗A(bb−1Kn) <
ε

2

holds for every n > δ. We know δ∗A(cc−1L′) = δ∗A(c−1L′)/2 for any c ∈ {a, b}
and L′ by Lemma 1-(5), the above inequality can be transformed as

1

2
(δ∗A(a−1L)− δ∗A(a−1Kn)) +

1

2
(δ∗A(b−1L)− δ∗A(b−1Kn)) <

ε

2
.

Hence we can conclude that δ∗A(a−1L) − δ∗A(a−1Kn) < ε for every n > δ, i.e.,
(a−1Kn)n is a convergent sequence to a−1L from inner. We can show that
(a−1Mn)n converges to L from outer by the same way. ut



Corollary 2. Let C ⊆ D be language classes where C is closed under Boolean
operations and left-and-right quotients and every language in D has a density.
Then C-measurability in D is preserved under Boolean operations and left-and-
right quotients.

An application of Theorem 8 is a proof of the undecidability of
REG-measurability for context-free languages, modulo the following conjecture.

Conjecture 1. If a context-free language L has a density, then its quotients a−1L
and La−1 also have densities.

Theorem 9. If Conjecture 1 is true, then it is undecidable whether a given
context-free grammar generates REG-measurable language or not.

Proof. The class CFL is closed under left-and-right quotients, hence by Theo-
rem 8 the class P = {L ∈ CFLA | L is REG-measurable}A is also closed under
left-and-right quotients. It is clear that REG ⊆ P holds, and by Theorem 4-(1)
there is REG-immeasurable context-free language M2, i.e., P ( CFL. Because
the universality problem for CFL is undecidable, the REG-measurability is also
undecidable for CFL by the well-known Greibach’s theorem [12]. ut

We conclude this section by giving the following Carathéodory’s condition
characterisation of REG-measurability. The proof is almost same with one of
Lebesgue measurability (cf. [2]), albeit that requires some density condition which
is formal language theoretic.

Theorem 10. Let C be a class of languages closed under Boolean operations
and let L ⊆ A∗ be a language. If every language obtained by a finite Boolean
combination of languages in C ∪ {L} has a density, then L is C-measurable if
and only if the following Carathéodory’s condition holds:

∀X ⊆ A∗ µC(X) = µC(X ∩ L) + µC(X ∩ L). (4)

Proof. If L satisfies the Carathéodory condition (4), then we obtain µC(A
∗) =

1 = µC(L) +µC(L) when X = A∗, thus by Lemma 3, L is C-measurable because
C is closed under complementation by assumption.

Now we show the converse direction. Assume L is C-measurable. For any
language X ⊆ A∗ and for any ε > 0, by the definition of µC , there exists K ∈ C
such that X ⊆ K and δ∗A(K) ≤ µC(X)+ε. Here L,K and K are all C-measurable,
and by assumption K ∩ L and K ∩ L have densities. Hence, by Theorem 7,
K ∩ L and K ∩ L are C-measurable. Because K = (K ∩ L) ∪ (K ∩ L) and
(K ∩ L) ∩ (K ∩ L) = ∅,

δ∗A(K) = δ∗A(K ∩ L) + δ∗A(K ∩ L)

holds by the additivity of δ∗A (Lemma 1-(4)). Hence we have

µC(X) ≥ δ∗A(K)− ε = δ∗A(K ∩ L) + δ∗A(K ∩ L)− ε
≥ µC(X ∩ L) + µC(X ∩ L)− ε.



Because ε > 0 is taken arbitrarily, we can conclude that

µC(X) ≥ µC(X ∩ L) + µC(X ∩ L)

holds. The reverse direction ≤ of the above inequality is directly obtained by
the subadditivity of µC (Lemma 2-(3)). ut

4 Carathéodory Extensions of Local Varieties

In this section, as a “miniature” of REG-measurability, we investigate
C-measurability for some subclass C of REG. The considered subclasses of regular
languages here are so-called local varieties, which enjoy good closure properties
and have rich algebraic structure. First we introduce some background materials
from algebraic language theory.

4.1 Local varieties and an Eilenberg-type theorem

Due to the space limitation, we assume that the author has a basic knowledge
of algebraic language theory (e.g., syntactic monoids and morphism, etc. cf. [13,
14]). For a language L over A, we denote its syntactic monoid by Synt(L) and its
syntactic morphism by ηL : A∗ → Synt(L). A monoid M is said to be aperiodic, if
there is k ≥ 1 such that xk = xk+1 for any x ∈M . M is called zero if it contains
zero element 0: 0 · x = x · 0 = 0 for all x ∈ M . Further, a zero semigroup S is
called nilpotent if there is k ≥ 1 such that xk = 0 for any x ∈ S. A non-empty
subset I ⊆M is called ideal if M · I ·M ⊆ I. An ideal I is said to be minimal if
no proper subset of I is an ideal. It is well-known that any finite monoid has a
unique minimal ideal (cf. [14]).

The main targets in the next subsection are classes of regular languages with
some good closure properties as follows.

Definition 3 (cf. [15]). A family C ⊆ REGA of regular languages over A is
called local variety if it is closed under Boolean operations and left-and-right
quotients. A family V of finite monoids generated by A is called local pseudova-
riety if it is closed under quotients and subdirect products.

Theorem 11 (Eilenberg-type theorem for local varieties [16]). For each
A, there is a lattice isomorphism between the class of all local varieties and the
class of all local pseudovarieties.

This Eilenberg-type theorem roughly states that: if a class of languages is
somewhat “robust” (i.e., enjoys good closure properties), then it could be char-
acterised by an algebraic way (at least there should exist the corresponding local
pseudovariety), and vice versa. We now enumerate three examples of local vari-
eties and corresponding local pseudovarieties (see Fig 1). A prominent example
of a local variety is star-free languages. A language L is said to be star-free if it
can be obtained by a finite combination of Boolean operations and concatena-
tions of finite languages. The family SFA of all star-free languages over A forms
a local variety, and this class can be characterised in purely algebraic way as
follows.
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Fig. 1. Relation between local varieties, extensions and local pseudovarieties.

Theorem 12 (Schützenberger’s theorem [17]).
The corresponding local pseudovariety of SFA is the class of aperiodic finite
monoids generated by A. Namely, L ∈ SFA if and only if Synt(L) is aperiodic.

Next we introduce two additional examples of local varieties. One is the
family FINA of all finite and co-finite languages and another one is the family
ZOA of all regular languages with density either zero or one. FINA and ZOA

form a local variety, respectively. In his Volume B [18], Eilenberg showed that
the class of all finite nilpotent semigroups form a pseudovariety (of semigroups)
and its corresponding +-variety of languages is exactly the class of all finite and
co-finite languages. The corresponding local pseudovariety of ZOA is the family
of all finite zero monoids (cf. [6]).

4.2 Extension as a closure operator

In this subsection we mainly consider “extensions” of local varieties. All results
are summarised in Fig. 1. First we introduce necessary notation.

Definition 4. For a family C ⊆ 2A
∗

of languages over A, we define its
(Carathéodory) extension as

ExtA(C) = {L ⊆ A∗ | L is C-measurable},

and define its regular extension as

RExtA(C) = ExtA(C) ∩ REGA.

Observe that this extension operator is a closure as follows.

Theorem 13. ExtA is a closure operator, i.e., it satisfies the following three
properties for each C,D ⊆ 2A

∗
.

extensive: C ⊆ ExtA(C).



monotone: C ⊆ D implies ExtA(C) ⊆ ExtA(D).
idempotent: ExtA(ExtA(C)) = ExtA(C).

Proof. The extensivity and monotonicity are clear from the definition. To show
the idempotency, consider L ∈ ExtA(ExtA(C)). In this case, there exists an
infinite sequence (Kn,Mn)n of pairs of languages in ExtA(C) that converges to L.
For each n, Kn and Mn belong to ExtA(C), thus there exist a sequence (K(n,i))i
of languages in C that converges to Kn from inner and a sequence (M(n,i))i of
languages in C that converges to Mn from outer. Then the infinite sequence
(K(n,n),M(n,n))n of pairs of languages in C converges to L,i.e., L ∈ ExtA(C). ut

In the previous section, we showed that the C-measurability is closed under
Boolean operations and left-and-right quotients if C is closed under these op-
erations and every language in C have a density (Corollary 2). Because every
regular language have a density (Theorem 1), we have the following corollary.

Corollary 3. For any local variety C ⊆ REGA over A, RExtA(C) ⊇ C is also a
local variety over A, i.e., RExtA is a closure operator over the class of all local
varieties.

Clearly, any FINA-measurable language is either finite or co-finite. A similar
argument can be applied for ZOA. Thus RExtA does not properly extend these
two local varieties.

Theorem 14. RExtA(FINA) = FINA and RExtA(ZOA) = ZOA for each A.

Furthermore, for a unary alphabet A = {a}, it is well-known that SFA =
ZOA = FINA, hence we have the following as a corollary.

Corollary 4. RExtA(SFA) = SFA = ZOA = FINA for A = {a}.

The situation is different for the case #(A) ≥ 2. As we explained in Remark 1,
if #(A) ≥ 2, RExtA(SFA) can contain any regular language over B ( A hence
RExtA(SFA) ) SFA (RExtA(SFA) 3 (aa)∗ /∈ SFA, in particular). The next
theorem says, however, RExtA(SFA) can not contain some regular languages
over A like (AA)∗.

Theorem 15. If a star-free language L ∈ SFA satisfies δ∗A(L) > 0, then L
contains words of even and odd length.

Proof. Consider the syntactic monoid Synt(L), the syntactic morphism ηL :
A∗ → Synt(L) and the syntactic image S = ηL(L) of L. Because L is regu-
lar, Synt(L) is finite. Hence it has a unique minimal ideal K ⊆ Synt(L). Let wx

be a word whose syntactic image ηL(wx) is x for each x ∈ Synt(L).
The assumption δ∗A(L) > 0 implies S ∩ K 6= ∅, because δ∗A(η−1(Synt(L) \

K)) = 0 holds; for each k ∈ K and x, y ∈ A∗, we have ηL(xwky) = ηL(x) · k ·
ηL(y) ∈ K and hence η−1(Synt(L)\K)∩A∗wkA

∗ = ∅ which implies η−1(Synt(L)\
K) is null by infinite monkey theorem. Thus L is not null implies its syntactic
image S contains at least one element of K, say, t ∈ S ∩K.



Clearly, δ∗A(η−1(K)) = 1 holds and hence η−1(K) contains some word wodd

of odd length. Let modd = ηL(wodd) be its syntactic image. By Schützenberger’s
theorem (Theorem 12), Synt(L) is aperiodic thus there is some i ≥ 1 such that
mi

odd = mi+1
odd. By the minimality of the ideal K, there exist x, y ∈ Synt(L) such

that x ·mi
odd · y = t (if not, the ideal Synt(L) ·mi

odd · Synt(L) generated by mi
odd

does not contain t hence it should be a proper subset of K). Then two words
wxw

i
oddwy and wxw

i+1
oddwy has the same syntactic image

ηL(wxw
i
oddwy) = x ·mi

odd · y = t = x ·mi+1
odd · y = ηL(wxw

i+1
oddwy),

thus both belong to L. Because the length of wodd is odd, the lengths of these
two words are different modulo 2. ut

The above theorem tells us that any star-free subset of (AA)∗ is null and any
star-free superset of (AA)∗ is co-null, thus we have the following corollary.

Corollary 5. (AA)∗ /∈ RExtA(SFA) for any A. In particular, µ
SFA

((AA)∗) = 0

and µSFA
((AA)∗) = 1. Further, SFA ( RExtA(SFA) ( REGA if #(A) ≥ 2.

We are not aware what the associated local pseudovariety of this new local
variety RExtA(SFA) yet, but, we can say that RExtA(SFA) always contains all
zero-one regular languages.

Theorem 16. RExtA(SFA) ⊇ ZOA for any A.

Proof. The case #(A) = 1 follows from Theorem 4. We show this for a general
alphabet A. Let L ∈ ZOA and we can assume δ∗A(L) = 0 without loss of gen-
erality. By Theorem 2, L is null implies there is some forbidden word w of L:
L ∩A∗wA∗ = ∅. Hence L ⊆ A∗wA∗ holds and µ

SFA
(L) = µSFA

(L) = 0. ut

5 Future Work and Open Problems

We have investigated general properties of C-measurability, and examine how the
extension operator RExtA extends certain local varieties of regular languages. An
immediate future work is to give an algebraic characterisation of RExtA(SFA).
We are also interested whether we can characterise the associated extension oper-
ator of local pseudovarieties of finite monoids MExtA(V) = F (RExtA(F−1(V)))
in purely algebraic way, where F is the lattice isomorphism stated in Theo-
rem 11. One of the ideal goals is to understand the class of REG-measurable
context-free languages. However, it looks like a bit difficult since the theory of
densities of context-free languages is not well developed yet (e.g., Conjecture 1).
Actually, we are not aware whether there is a context-free language that do not
have a density (L⊥ in Example 1-(3) is not context-free). More open problems
related to REG-measurability and context-free languages were posed in [1].
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