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Abstract6

This paper investigates a new property of formal languages called REG-measurability where REG7

is the class of regular languages. Intuitively, a language L is REG-measurable if there exists an8

infinite sequence of regular languages that “converges” to L. A language without REG-measurability9

has a complex shape in some sense so that it can not be (asymptotically) approximated by regular10

languages. We show that several context-free languages are REG-measurable (including languages11

with transcendental generating function and transcendental density, in particular), while a certain12

simple deterministic context-free language and the set of primitive words are REG-immeasurable in13

a strong sense.14
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1 Introduction19

Approximating a complex object by more simple objects is a major concept in both computer20

science and mathematics. In the theory of formal languages, various types of approximations21

have been investigated (e.g., [15, 16, 10, 7, 5, 8]). For example, Kappes and Kintala [15] intro-22

duced convergent-reliability and slender-reliability which measure how a given deterministic23

automaton A nicely approximates a given language L over an alphabet A. Formally A is said24

to accept L convergent-reliability if the ratio of the number of incorrectly accepted/rejected25

words of length n26

#((L(A)4L) ∩An) /#(An)27

tends to 0 if n tends to infinity, and is said to accept L slender-reliability if the number of28

incorrectly accepted/rejected words of length n is always bounded above by some constant29

c: i.e., #((L(A)4L) ∩An) ≤ c for any n. Here L(A) denotes the language accepted by A,30

#(S) denotes the cardinality of the set S, L denotes the complement of L and 4 denotes the31

symmetric difference. A slightly modified version of approximation is bounded-ε-approximation32

which was introduced by Eisman and Ravikumar. They say that two languages L1 and L233

provide a bounded-ε-approximation of language L if L1 ⊆ L ⊆ L2 holds and the ratio of34

their length-n difference satisfies35

#((L2 \ L1) ∩An) /#(An) ≤ ε36

for every sufficiently large n ∈ N. Perhaps surprisingly, they showed that no pair of37

regular languages can provide a bounded-ε-approximation of the language {w ∈ {a, b}∗ |38

w has more a’s than b’s} for any 0 ≤ ε < 1 [10]. This result is a very strong inapproximable39

(by regular languages) example of certain non-regular languages. Also, there is a different40

framework of approximation so-called minimal-cover [8, 5], and a notion represents some41

inapproximability by regular languages so-called REG-immunity [12].42
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23:2 Asymptotic Approximation by Regular Languages

A model of approximation introduced in this paper is rather close to the work of Eisman43

and Ravikumar [10]. Instead of approximating by a single regular language, we consider an44

approximation of some non-regular language L by an infinite sequence of regular languages45

that “converges” to L. Intuitively, we say that L is REG-measurable if there exists an infinite46

sequence of pairs of regular languages (Kn,Mn)n∈N such that Kn ⊆ L ⊆ Mn holds for all47

n and the “size” of the difference Mn \ Kn tends to 0 if n tends to infinity. The formal48

definition of “size” is formally described in the next section: we use a notion called density49

(of languages) for measuring the “size” of a language.50

Although we used the term “approximation” in the title and there are various research on51

this topic in formal language theory, our work is strongly influenced by the work of Buck [4]52

which investigates, as the title said, the measure theoretic approach to density. In [4] the53

concept of measure density µ of subsets of natural numbers N was introduced. Roughly54

speaking, Buck considered an arithmetic progression X = {cn+ d | n ∈ N} (where c, d ∈ N,55

c can be zero) as a “basic set” whose natural density as δ(X) = 1/c if c 6= 0 and δ(X) = 056

otherwise, then defined the outer measure density µ∗(S) of any subset S ⊆ N as57

µ∗(S) = inf
{∑

i

δ(Xi) | S ⊆ X and X is a finite union of58

disjoint arithmetic progressions X1, . . . , Xk

}
.59

60

Then the measure density µ(S) = µ∗(S) was introduced for the sets satisfying the condition61

µ∗(S) + µ∗(S) = 1 (1)62
63

where S = N \ S. Technically speaking, the class Dµ of all subsets of natural numbers64

satisfying Condition (1) is the Carathéodory extension of the class65

D0
def== {X ⊆ N | X is a finite union of arithmetic progressions },66

see Section 2 of [4] for more details. Notice that here we regard a singleton {d} as an67

arithmetic progression (the case c = 0 for {cn + d | n ∈ N}), any finite set belongs to D0.68

Buck investigated several properties of µ and Dµ, and showed that Dµ properly contains D0.69

In the setting of formal languages, it is very natural to consider the class REG of regular70

languages as “basic sets” since it has various types of representation, good closure properties71

and rich decidable properties. Moreover, if we consider regular languages REGA over a unary72

alphabet A = {a}, then REGA is isomorphic to the class D0; it is well known that the Parikh73

image {|w| | w ∈ L} ⊆ N (where |w| denotes the length of w) of every regular language L in74

REGA is semilinear and hence it is just a finite union of arithmetic progressions. From this75

observation, investigating the densities of regular languages and its measure densities (i.e.,76

REG-measurability) for non-regular languages can be naturally considered as an adaptation77

of Buck’s study [4] for formal language theory.78

Our contribution79

In this paper we investigate REG-measurability (' asymptotic approximability by regu-80

lar languages) of non-regular, mainly context-free languages. The main results consist of81

three kinds. We show that: (1) several context-free languages (including languages with82

transcendental generating function and transcendental density) are REG-measurable [The-83

orem 23–30]. (2) there are “very large/very small” (deterministic) context-free languages84

that are REG-immeasurable in a strong sense [Theorem 36]. (3) the set of primitive words85
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is “very large” and REG-immeasurable in a strong sense [Theorem 37–38]. Open problems86

and some possibility of an application of the notion of measurability to classifying formal87

languages will be stated in Section 6.88

The paper is organised as follows. Section 2 provides mathematical background of89

densities of formal languages. The formal definition of REG-approximability and REG-90

measurability are introduced in Section 3. The scenario of Section 3 mostly follows one91

of the measure density introduced by Buck [4] which was described above. In Section 4,92

we will give several examples of REG-inapproximable but REG-measurable context-free93

languages. These examples include, perhaps somewhat surprisingly, a language with a94

transcendental density which have been considered as a very complex context-free language95

from a combinatorial viewpoint. In Section 5, we consider the set of so-called primitive96

words and its REG-measurability. Section 6 ends this paper with concluding remarks, some97

future work and open problems. We assume that the reader has a basic knowledge of formal98

language theory.99

2 Densities of Formal Languages100

For a set S, we write #(S) for the cardinality of S. The set of natural numbers including101

0 is denoted by N. For an alphabet A, we denote the set of all words (resp. all non-empty102

words) over A by A∗ (resp. A+). We write ε for the empty word and write An (resp. A<n)103

for the set of all words of length n (resp. less than n). For a language L, we write Alph(L)104

for the set of all letters appeared in L. For word w ∈ A∗ and a letter a ∈ A, |w|a denotes the105

number of occurrences of a in w. A word v is said to be a factor of a word w if w = xvy for106

some x, y ∈ A∗, further said to be a prefix of w if x = ε. For a language L ⊆ A∗, we denote107

by L = A∗ \ L the complement of L.108

A language class C is a family of languages {CA}A: finite alphabet where CA ⊆ 2A∗ for each109

A and CA ⊆ CB for each A ⊆ B. We simply write L ∈ C if L ∈ CA for some alphabet A.110

We denote by REG,DetCFL,UnCFL and CFL the class of regular languages, deterministic111

context-free languages, unambiguous context-free languages and context-free languages,112

respectively. A language L is said to be C-immune if L is infinite and no infinite subset of L113

belongs to C.114

I Definition 1. Let L ⊆ A∗ be a language. The natural density δA(L) of L is defined as115

δA(L) def== lim
n→∞

#(L ∩An)
#(An)116

if the limit exists, otherwise we write δA(L) = ⊥ and say that L does not have a natural117

density. The density δ∗A(L) of L is defined as118

δ∗A(L) def== lim
n→∞

1
n

n−1∑
k=0

#
(
L ∩Ak

)
#(Ak)119

if its exists, otherwise we write δ∗A(L) = ⊥ and say that L does not have a density. A120

language L ⊆ A∗ is called null if δ∗A(L) = 0, and conversely L is called co-null if δ∗A(L) = 1.121

I Remark 2. Notice that if L has a natural density (i.e., δA(L) 6= ⊥), then it also has a122

density and δ∗A(L) = δA(L) holds. But the converse is not true in general, e.g., the case123

L = (AA)∗ (see Example 4 below).124

The following observation is basic.125

CVIT 2016



23:4 Asymptotic Approximation by Regular Languages

B Claim 3. Let K,L ⊆ A∗ with δ∗A(K) = α, δ∗A(L) = β. Then we have:126

1. α ≤ β if K ⊆ L.127

2. δ∗A(L \K) = β − α if K ⊆ L.128

3. δ∗A(K) = 1− α.129

4. δ∗A(K ∪ L) ≤ α+ β if δ∗A(K ∪ L) 6= ⊥.130

5. δ∗A(K ∪ L) = α+ β if K ∩ L = ∅.131

For more properties of δ∗A, see Chapter 13 of [3].132

I Example 4. Here we enumerate a few examples of densities of languages.133

The set of all words A∗ clearly satisfies δA(A∗) = 1, and its complement ∅ satisfies134

δA(∅) = 0. It is also clear that every finite language is null.135

For the set {a}A∗ of all words starting with a ∈ A, we have #({a}A∗ ∩An) /#(An) =136

#
(
aAn−1) /#(An) = 1/#(A) . Hence δA({a}A∗) = 1/#(A).137

Consider (AA)∗ the set of all words with even length. Because138

#((AA)∗ ∩An)
#(An) =

{
1 if n is even,
0 if n is odd.

139

holds, its limit does not exist and thus (AA)∗ does not have a natural density δA((AA)∗) =140

⊥. However, it has a density δ∗A((AA)∗) = 1/2.141

The semi-Dyck language142

D def== {w ∈ {a, b}∗ | |w|a = |w|b and |u|a ≥ |u|b for every prefix u of w}143

is non-regular but context-free. It is well known that the number of words in D of length144

2n is equal to the n-th Catalan number whose asymptotic approximation is Θ(4n/n3/2).145

Thus146

#(D ∩An)
#(An) =

{
Θ(1/(n/2)3/2) if n is even,
0 if n is odd.

147

and we have δA(D) = 0, i.e., D is null.148

Example 4 shows us that, for some regular language L, its natural density is either zero or149

one, for some, like L = {a}A∗ (for #(A) ≥ 2), δA(L) could be a real number strictly between150

zero and one, and for some, like L = (AA)∗, a natural density may not even exist. However,151

the following theorem tells us that all regular languages do have densities.152

I Theorem 5 (cf. Theorem III.6.1 of [21]). Let L ⊆ A∗ be a regular language. Then there is153

a positive integer c such that for all natural numbers d < c, the following limit exists154

lim
n→∞

#
(
L ∩Acn+d)

#(Acn+d)155

and it is always rational, i.e., the sequence (#(L ∩An) /#(An))n∈N has only finitely many156

accumulation points and these are rational and periodic.157

I Corollary 6. Every regular language has a density and it is rational.158

I Corollary 7. For any regular language L ⊆ A∗, δA(L) = 0 if and only if δ∗A(L) = 0.159

Furthermore, for unambiguous context-free languages, the following holds.160

I Theorem 8 (Berstel [2]). For any unambiguous context-free language L over A, its density161

δ∗A(L), if it exists (i.e., δ∗A(L) 6= ⊥), is always algebraic.162
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In the next section we will introduce a language with a transcendental density, which should163

be inherently ambiguous due to Theorem 8.164

We conclude the section by introducing the notion called dense: a property about some165

topological “largeness” of a language (cf. Chapter 2.5 of [3]).166

I Definition 9. A language L ⊆ A∗ is said to be dense if the set of all factors of L is equal167

to A∗. We say that a word w ∈ A∗ is a forbidden word (resp. forbidden prefix) of L if168

L ∩A∗wA∗ = ∅ (resp. L ∩ wA∗ = ∅).169

Observe that L ⊆ A∗ is dense if and only if no word is a forbidden word of L. The next170

theorem ties two different notions of “largeness” of languages in the regular case.171

I Theorem 10 (S. [23]). A regular language is non-null if and only if it is dense.172

The “only if”-part of Theorem 10 is nothing but the well-known so-called infinite monkey173

theorem (which states that L is not dense implies L is null), and this part is true for any174

(non-regular) languages. But we stress that “if”-part is not true beyond regular languages; for175

example the semi-Dyck language D is null but dense (which will be described in Proposition 12).176

We denote by REG+ the family of non-null regular languages, which is equivalent to the177

family of regular languages with positive densities thanks to Corollary 6.178

3 Approximability and Measurability179

Although we will mainly consider REG-measurability of non-regular languages in this paper,180

here we define two notions approximability and measurability in general setting, with few181

concrete examples.182

I Definition 11. Let C,D be classes of languages. A language L is said to be (C, ε)-lower-183

approximable if there exists K ∈ C such that K ⊆ L and δ∗Alph(L)(L \K) ≤ ε. A language184

L is said to be (C, ε)-upper-approximable if there exists M ∈ C such that L ⊆ M and185

δ∗Alph(M)(M \ L) ≤ ε. A language L is said to be C-approximable if L is both (C, 0)-lower186

and (C, 0)-upper-approximable. D is said to be C-approximable if every language in D is187

C-approximable.188

The following proposition gives a simple REG-inaproximable example.189

I Proposition 12. The semi-Dyck language D is REG-inapproximable.190

Proof. We already mentioned that D is null in Example 4, and thus D is (REG, 0)-lower-191

approx by ∅ ⊆ D. One can easily observe that D has no forbidden word: since for any192

w ∈ A∗ there exists a pair of natural numbers (n,m) ∈ N2 such that anwbm ∈ D. Hence if a193

regular language L satisfies D ⊆ L, L has no forbidden word, too, and thus L is non-null by194

Theorem 10. Thus by Claim 3, δ∗A(L \ D) = δ∗A(L)− δ∗A(D) = δ∗A(L) > 0, which means that195

D can not be (REG, 0)-upper-approximable. J196

The proof of Proposition 12 only depends on the non-existence of forbidden words, hence we197

can apply the same proof to the next theorem.198

I Theorem 13. Any null language having no forbidden word is (REG, 0)-upper-inapproximable.199

Because D is deterministic context-free, in our term we have:200

I Corollary 14. DetCFL is REG-inapproximable.201

CVIT 2016



23:6 Asymptotic Approximation by Regular Languages

Furthermore, by the combination of Theorem 8 and the next theorem, we will know that202

there exists a context-free language which can not be approximated by any unambiguous203

context-free language.204

I Theorem 15 (Kemp [17]). Let A = {a, b, c}. Define205

S1
def== {a}{biai | i ≥ 1}∗ S2

def== {aib2i | i ≥ 1}∗{a}+,206

and207

L1
def== S1{c}A∗ L2

def== S2{c}A∗.208

Then K def== L1 ∪ L2 is a context-free language with a transcendental natural density δA(K).209

I Corollary 16. CFL is UnCFL-inapproximable.210

We then introduce the notion of C-measurability which is a formal language theoretic211

analogue of Buck’s measure density [4].212

I Definition 17. Let C,D be classes of languages. For a language L, we define its C-lower-213

density as214

µC(L) def== sup{δ∗A(K) | A = Alph(L),K ⊆ L,K ∈ CA, δ∗A(K) 6= ⊥}215

and its C-upper-density as216

µC(L) def== inf{δ∗A(K) | A = Alph(L), L ⊆ K,K ∈ CA, δ∗A(K) 6= ⊥}.217

A language L is said to be C-measurable if µC(L) = µC(L) holds, and we simply write µC(L)218

as µC(L). D is said to be C-measurable if every language in D is C-measurable.219

I Definition 18. We call µC(L)− µC(L) the C-gap of a language L. We say that a language220

L has full C-gap if its C-gap equals to 1, i.e., µC(L)− µC(L) = 1.221

In the next section, we describe several examples of both REG-measurable and REG-222

immeasurable languages. The REG-gap could be a good measure how much a given language223

has a complex shape from the viewpoint of regular languages.224

The following lemmata are basic.225

I Lemma 19. Let K,L be two languages.226

1. µC(K) ≤ µC(L) if K ⊆ L.227

2. µC(K ∪ L) ≤ µC(K) + µC(L) if C is closed under union.228

3. µC(K) = δ∗A(K) if K ∈ C and δ∗A(K) 6= ⊥.229

I Lemma 20. Let C be a language class such that C is closed under complement and every230

language in C has a density. A language L ⊆ A∗ is C-measurable if and only if231

µC(L) + µC(L) = 1. (2)232
233

Proof. Let L be a language and A = Alph(L). By definition, L satisfies Condition (2) if and234

only if235

inf{δ∗A(K) | L ⊆ K,K ∈ C} = 1− inf{δ∗A(K) | L ⊆ K,K ∈ C} (3)236
237

holds. On the other hand, L is measurable if and only if238

inf{δ∗A(K) | L ⊆ K,K ∈ C} = sup{δ∗A(K) | K ⊆ L,K ∈ C}. (4)239
240

For any language K ∈ CA such that K ⊆ L and δ∗A(K) 6= ⊥, its complement K satisfies241

L ⊆ K and δ∗A(K) = 1 − δ∗A(K). This means that if CA is closed under complement then242

sup{δ∗A(K) | K ⊆ L,K ∈ CA} = 1− inf{δ∗A(K) | L ⊆ K,K ∈ CA}, holds, which immediately243

implies the equivalence of Condition (3) and Condition (4). J244
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4 REG-measurability on Context-free Languages245

In this section we examine REG-measurability of several types of context-free languages.246

The first type of languages (Section 4.1) is null context-free languages. Although some null247

language can have a full REG-gap as stated in the next theorem, we will show that typical248

null context-free languages are REG-measurable.249

I Theorem 21. There is a recursive language L which is null but µREG(L) = 1.250

Proof. Let A be an alphabet with #(A) ≥ 2 and let (Ai)i∈N be an enumeration of automata251

over A such that REGA = {L(Ai) | i ∈ N}; we can take such enumeration by enumerating252

some binary representation of automata via shortlex order <lex. We will construct a null253

language L such that µREG(L) = 1, in particular, L is not a subset of every regular co-infinite254

language.255

Consider the following program P which takes an input word w:256

Step 1 set i = 0 and ` = 0.257

Step 2 check L(Ai) is co-infinite (i.e., the complement L(Ai) is infinite) or not.258

Step 3 if L(Ai) is co-finite, then set i = i+ 1 and go back to Step 2.259

Step 4 otherwise, pick u such that u is the smallest (with respect to <lex) word satisfying260

|u| > ` and u /∈ L(Ai) (such u surely exists since L(Ai) is co-infinite).261

Step 5 if w = u then P accepts w and halts.262

Step 6 if w <lex u then P rejects w and halts.263

Step 7 if u <lex w then set ` = |u|, i = i+ 1 and go back to Step 2.264

One can easily observe that all Steps are effective and P ultimately halts for any input265

word w because the length of the word u in Step 4 is strictly increasing until u = w or266

w <lex u. Thus the language L
def== {w ∈ A∗ | P accepts w} is recursive. Moreover, L satisfies267

the following properties: (1) L 6⊆ R for any regular co-infinite language because by Step (4–5)268

P accepts some word w /∈ R, and (2) δA(L) = 0; by Step (5–6) and the length of u is strictly269

increasing, P rejects every word in An except for one single word u, for each n. Clearly, (2)270

implies δA(L) = 0, and (1) implies µREG(L) = 1 since every language R with δ∗A(R) < 1 is271

co-infinite. J272

The second type of languages (Section 4.2) is inherently ambiguous languages and the third273

type of languages (Section 4.3) includes Kemp’s language K whose density is transcendental.274

The last type of languages (Section 4.4) is languages with full REG-gap, i.e., strongly275

REG-immeasurable languages.276

4.1 Null Context-free Languages277

First we consider the following language with constraints on the number of occurrences of278

letters, which is a very typical example of a non-regular but context-free language.279

I Definition 22. For an alphabet A and letters a, b ∈ A such that a 6= b, we define280

LA(a, b) def== {w ∈ A∗ | |w|a = |w|b}.281

I Theorem 23. LA(a, b) is REG-measurable where A = {a, b}.282

Proof. It is enough to show that the complement L = L(a, b) satisfies µREG(L) = 1. For283

each k ≥ 1, we define284

Lk
def== {w ∈ A∗ | |w|a 6= |w|b mod k}.285

CVIT 2016
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q0

q1q2

a

a

a

b
b

b

1

Figure 1 The deterministic automaton A3 in the Proof of Theorem 23. Here, the state q0 having
unlabelled incoming arrow is initial and the states q1, q2 having unlabelled outgoing arrow are final.

Clearly, Lk ⊆ L holds. Each Lk is recognised by a k-states deterministic automaton286

Ak = (Qk = {q0, . . . , qk−1},∆k : Qk ×A→ Qk, q0, Qk \ {q0})287

where288

∆k(qi, a) = qi+1 mod k ∆k(qi, b) = qi−1 mod k ( for each i ∈ {0, . . . , k − 1}),289

q0 is the initial state, and any other state q ∈ Qk \ {q0} is a final state (the case k = 3 is290

depicted in Fig 1). The adjacency matrix of Ak is291

Mk =



0 1 0 · · · · · · 1

1 0 1
. . .

...

0 1
. . . . . . . . .

...
...

. . . . . . . . . 1 0
...

. . . 1 0 1
1 · · · · · · 0 1 0


= Ek + Ek−1

k where Ek =



0 0 0 · · · · · · 1

1 0 0
. . .

...

0 1
. . . . . . . . .

...
...

. . . . . . . . . 0 0
...

. . . 1 0 0
0 · · · · · · 0 1 0


.292

293

Mk is a special case of circulant matrices. A k-dimensional circulant matrix Ck is a294

matrix that can be represented by a polynomial of Ek:295

Ck = p(Ek) =
k−1∑
n=0

cnE
n
k296

and it is well known that Ck can be diagonalised as, for a k-th root of unity ξk = e−
2πi
k297

(where i is the imaginary unit),298

1√
k
FHk · Ck ·

1√
k
Fk = diag(p(1), p(ξ−1

k ), p(ξ−2
k ), . . . , p(ξ−(k−1)

k ))299

where Fk = (fn,m) with fn,m = ξ
(n−1)(m−1)
k (for 1 ≤ n,m ≤ k) is the k-dimensional Fourier300

matrix, FHk is its Hermitian transpose and diag(λ1, · · · , λk) is the diagonal matrix whose301

n-th diagonal element is λn (for 1 ≤ n ≤ k) (cf. Section 5.2.1 of [18]). Hence, in the case of302

Mk = pAk(Ek) = Ek + Ek−1
k , we have303

1√
k
FHk ·Mk ·

1√
k
Fk = diag(2, ξ−1

k + ξk, ξ
−2
k + ξ2

k, . . . , ξ
−(k−1)
k + ξk−1

k ) (5)304

305
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because, for any n ≥ 0, pAk(ξ−nk ) = ξ−nk + ξ
−n(k−1)
k = ξ−nk + ξnk holds.306

Let Λk = diag(2, ξ−1
k + ξk, ξ

−2
k + ξ2

k, . . . , ξ
−(k−1)
k + ξk−1

k ). Because Ak is deterministic and307

the final states are all but q0, the number of words of length n in Lk is exactly the number308

of paths from q0 to any other state in Ak. For the k-dimensional vectors e = (1, 0, 0, . . . , 0)309

and 1 = (1, 1, 1, . . . , 1), from Equation (5) we have310

#(Lk ∩An) = e ·Mn
k · (1− e)T311

= 1
k

e · Fk · Λnk · FHk (1− e)T312

= 1
k

1 · Λnk ·

k − 1,
k−1∑
j=1

ξ−jk ,

k−1∑
j=1

ξ−2j
k , . . . ,

−(k−1)∑
j=1

ξ
−(k−1)j
k

T

313

= 1
k

2n(k − 1) + (ξ−1
k + ξk)n

k−1∑
j=1

ξ−jk + · · ·+ (ξ−(k−1)
k + ξk−1

k )n
k−1∑
j=1

ξ
−(k−1)j
k

 . (6)314

315

If k is odd k = 2m + 1, then for any 1 ≤ j ≤ k − 1, ξ−jk + ξjk is a real number whose316

absolute value is strictly smaller than 2; because ξ−jk is the complex conjugate of ξjk and317

hence |ξ−jk + ξjk| = |2Re(ξjk)| < 2 for odd k. Hence from Equation (6) we can deduce that318

#(Lk ∩An) = k − 1
k

2n + o(2n)319

where o(2n) means some function such that limn→∞ o(2n)/2n = 0. Thus we have δA(Lk) =320

k−1
k for odd k = 2m + 1, which tends to 1 if k tends to infinity, i.e., µREG(L) = 1. This321

completes the proof. J322

By Theorem 23, it is also true that any subset of L{a,b}(a, b) is REG-measurable. In323

particular, we have:324

I Corollary 24. The semi-Dyck language D ⊆ L{a,b}(a, b) is REG-measurable.325

The next example is the set of all palindromes.326

I Theorem 25. PA
def== {w ∈ A∗ | w = rev(w)} is REG-measurable.327

Proof. Because the case #(A) = 1 is trivial (PA = A∗), we assume that #(A) ≥ 2. It is328

enough to show that the complement PA is REG-measurable.329

For each k ≥ 1, we define330

Lk
def== {w1A

∗w2 | w1, w2 ∈ Ak, w1 6= rev(w2)}.331

One can easily observe that Lk ⊆ PA for each k ≥ 1. Moreover, for any n > 2k, the number332

of words in Lk of length n is333

#(Lk ∩An) = #(A)k ·#(A)n−2k · (#(A)k − 1) = #(A)n −#(A)n−k .334

From this we can conclude that δA(Lk) = 1−#(A)−k and it tends to 1 if k tends to infinity.335

Thus we have µREG(PA) = 1. J336
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4.2 Some Inherently Ambiguous Languages337

There are REG-measurable inherently ambiguous context-free languages. Since every bounded338

language L ⊆ w∗1 · · ·w∗k is trivially REG-measurable (µREG(L) = 0), a typical example of an339

inherently ambiguous context-free language {aibjck | i = j or i = k} is REG-measurable.340

Some more complex examples of inherently ambiguous languages are the following341

languages with constraints on the number of occurrences of letters investigated by Flajolet [13]:342

O3
def== {w ∈ {a, b, c}∗ | |w|a = |w|b or |w|a = |w|c},343

O4
def== {w ∈ {x, x̄, y, ȳ}∗ | |w|x = |w|x̄ or |w|y = |w|ȳ}.344

345

I Theorem 26. O3 and O4 are REG-measurable.346

Proof. Let A = {a, b, c}. For the case O3, in a very similar way to Theorem 23, we347

can construct a sequence of automata (Aabk )k∈N such that each automaton Aabk satisfies348

L(Aabk ) ⊆ LA(a, b) and its adjacency matrix is of the form349

Mab
k = Mk + Ik =



1 1 0 · · · · · · 1

1 1 1
. . .

...

0 1
. . . . . . . . .

...
...

. . . . . . . . . 1 0
...

. . . 1 1 1
1 · · · · · · 0 1 1


350

351

where Mk is the adjacency matrix stated in Theorem 23 and Ik is the k-dimensional identity352

matrix. The automaton Aabk is obtained by just adding self-loop labeled by c for each state353

q ∈ Qk of Ak in Theorem 23. This sequence of automata ensures that the language LA(a, b)354

is REG-measurable (µREG(LA(a, b)) = 0, in particular). The same argument is applicable to355

the language LA(a, c), thus these union O3 = LA(a, b) ∪ LA(a, c) is also REG-measurable by356

Lemma 19. The case O4 can be achieved in the same manner. J357

Next we consider the so-called Goldstine language358

G def== {an1ban2b · · · anpb | p ≥ 1, ni 6= i for some i}.359

While G can be accepted by a non-deterministic pushdown automaton, its generating function360

is not algebraic [14] and thus it is an inherently ambiguous context-free language due to the361

well-known Chomsky–Schützenberger theorem stating that the generating function of every362

unambiguous context-free language is algebraic [6].363

I Theorem 27. G is REG-measurable.364

Proof. Let A = {a, b}. Observe that G ⊆ A∗b and µREG(G) ≤ δA(A∗b) = 1/2. Let365

LG = {u ∈ A∗ | uA∗{b} ∩ G = ∅}366

be the set of all forbidden prefixes of the complement G. For each k ≥ 1, we define367

Lk
def== {uA∗{b} | u ∈ LG ∩Ak}.368

If a word u is in LG, then by definition of LG, uvb is always in G for any word v, thus369

Lk ⊆ G holds for each k. Any word in LG = A∗ \ LG is a prefix of the infinite word370
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an1ban2ban3b · · · (ni = i for each i ∈ N) thus #(LG ∩An) = #(An)− 1 holds for each n ≥ 1.371

Hence we have372

δA(Lk) = lim
n→∞

#(Lk ∩An)
#(An) = lim

n→∞

(#
(
Ak
)
− 1) ·#

(
An−k−1)

#(An)373

= (#(A)k − 1) ·#(A)−k−1 = 2−1 − 2−k−1.374
375

This implies that δA(Lk) tends to 1/2. Thus µREG(G) = 1/2. J376

In general, for an infinite word w ∈ Aω, the set377

Copref(w) def== A∗ \ {u ∈ A∗ | u is a prefix of w}378

is called the coprefix language of w. The proof of Theorem 27 uses a key property that G can379

be characterised by using the coprefix language of the infinite word w = an1ban2ban3b · · · as380

G = Copref(w) ∩ {a, b}∗{b} which was pointed out in [1]. Thus by the same argument, we381

can say that any coprefix language L is REG-measurable (µREG(L) = 1, in particular).382

For coprefix languages, the following nice “gap theorem” holds.383

I Theorem 28 (Autebert–Flajolet–Gabarro [1]). Let w ∈ Aω be an infinite word generated by384

an iterated morphism, i.e., w = h(w) = hω(a) for some monoid morphism h : A∗ → A∗ and385

letter a ∈ A. Then for the coprefix language L = Copref(w) there are only two possibilities:386

1. L is a regular language.387

2. L is an inherently ambiguous context-free language.388

This means that we can construct, by finding some suitable morphism h, many examples of389

inherently ambiguous context-free languages.390

4.3 K: A Language with Transcendental Density391

We now show the fact that the language K defined by Kemp [17] (recall that the definition of392

K appeared in Therem 15) is REG-measurable. We will actually show a more general result393

regarding the following type of languages.394

I Definition 29. Let L ⊆ A∗ be a language and c /∈ A be a letter. We call the language395

L{c}(A ∪ {c})∗ over A ∪ {c} suffix extension of L by c.396

I Theorem 30. The suffix extension L′ ⊆ (A ∪ {c})∗ of any language L ⊆ A∗ by c /∈ A is397

REG-measurable.398

Proof. Let B = A ∪ {c} and k = #(B). We first show that L′ has a natural density. For399

any words u, v ∈ L with u 6= v, two languages u{c}B∗ and v{c}B∗ are disjoint, and clearly400

#(u{c}B∗ ∩Bn) /#(Bn) = #
(
u{c}Bn−|u|−1

)
/#(Bn) = kn−|u|−1/kn = k−(|u|+1)

401

holds for n > |u| thus δB(u{c}B∗) = k−(|u|+1). The natural density of L′ is402

δB(L′) = lim
n→∞

#(L′ ∩Bn)
#(Bn) = lim

n→∞

#
(⋃

w∈L(w{c}B∗ ∩Bn)
)

#(Bn)403

= lim
n→∞

∑
w∈L #(w{c}B∗ ∩Bn)

#(Bn) = lim
n→∞

∑
w∈(L∩A<n)

k−(|w|+1). (7)404

405

Because the sequence (
∑
w∈(L∩A<n) k

−(|w|+1))n∈N is non-decreasing and bounded above by406

1, the limit (7) exists, say δB(L′) = α.407
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For each n ∈ N, the language Ln
def==
⋃
w∈L∩A<n w{c}B∗ is regular (since L ∩ A<n is408

finite), Ln ⊆ L′ and δB(Ln) =
∑
w∈(L∩A<n) k

−(|w|+1). Hence µREG(L′) = α. By similar409

argument, for each n ∈ N, we can claim that the language Kn
def== B∗ \

⋃
w∈L∩A<n w{c}B

∗
410

satisfies Kn ⊇ L′ and δB(Kn) tends to α if n tends to infinity. Thus µREG(L′) = α. J411

Since K is the suffix extensions of the union S1 ∪ S2 in Theorem 15, we have:412

I Corollary 31. K is REG-measurable.413

I Remark 32. Theorem 30 indicates that REG-measurability is a quite relaxed property414

in some sense: even for a non-recursively-enumerable language, its suffix extension is still415

non-recursively-enumerable but REG-measurable. Moreover, because the class of recursively416

enumerable languages is just a countable set, there exist uncountably many REG-measurable417

non-recursively-enumerable languages.418

The same proof method works for the prefix extension and the infix extension (see the419

full version [22] for details).420

The same proof method works for the prefix extension and the infix extension.421

I Theorem 33. Let c /∈ A and A′ = A ∪ {c}. The prefix extension L′ = A′∗{c}L of any422

language L ⊆ A∗ is REG-measurable. Also, the infix extension L′′ = A′∗{c}L{c}A′∗ of any423

language L ⊆ A∗ is REG-measurable, µREG(L′′) = 0 if L = ∅, µREG(L′′) = 1 otherwise, in424

particular.425

Proof. The prefix extension of L is just the reverse of the suffix extension of L, the same426

proof method trivially works. For the infix extension L′′ = A′∗{c}L{c}A′∗, if L = ∅ then L′′427

is also empty and thus µREG(L′′) = 0. Further, if L 6= ∅ then there is a word w ∈ L and428

thus A′∗cwcA′∗ ⊆ L′′ holds, which means that δA′(A′∗cwcA′∗) = 1 by the infinite monkey429

theorem and we have µREG(L′′) = 1. J430

4.4 Languages with Full REG-Gap431

In Section 4.1, we showed that the language L{a,b}(a, b) is REG-measurable. On the other432

hand, by the result of Eisman–Ravikumar [10], we will know that the closely related language433

M def== {w ∈ {a, b}∗ | |w|a > |w|b},434

sometimes called the majority language, is not REG-measurable. This contrast is interesting.435

I Theorem 34 (Eisman–Ravikumar [10, 11]). Let A = {a, b} and L ⊆ A∗ be a regular436

language. Then M ⊆ L implies437

lim sup
n→∞

{#
(
L ∩An

)
/#(An)} = 0.438

One can easily observe that lim supn→∞{#
(
L ∩An

)
/#(An)} = 0 if and only if δA(L) = 0,439

which means that any regular superset of M is co-null. Thus the above theorem implies that440

both M and M are REG+-immune, hence we have:441

I Corollary 35. M has full REG-gap.442

By using the infinite monkey theorem and some probabilistic arguments, we can generalise443

the previous theorem as follows.444
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I Theorem 36. For any m ≥ 1, the following language over A = {a, b}445

Mm
def== {w ∈ A∗ | |w|a > m · |w|b}446

has full REG-gap, and δA(Mm) = 1/2 if m = 1 otherwise δA(Mm) = 0.447

Proof. First we prove that any non-null regular language L can not be a subset ofMm. Let η :448

A∗ →M be the syntactic morphism η and monoidM of L, and let c = maxm∈M minw∈η−1(m) |w|449

(this is well-defined natural number since M is finite). By the infinite monkey theorem,450

L is not null implies that L has no forbidden word, and thus for the word b2c there exist451

two words x and y such that xb2cy is in L. We can assume that |x|, |y| ≤ c without loss of452

generality by the definition of c, which implies |xb2cy|a ≤ |x| + |y| = 2c ≤ |xb2cy|b hence453

xb2cy /∈ Mm. Thus L 6⊆ Mm and µREG(Mm) = 0. By using same argument, we can prove454

that µREG(Mm) = 1 and hence Mm has full REG-gap.455

In the case m = 1, δA(M1) = δA(M) = 1/2 is obvious. It is enough to show that456

δA(M2) = 0 holds (since Mm ⊆ M2 for any m ≤ 2). Indeed, we have457

δA(M2) = lim
n→∞

#({w ∈ An | |w|a > 2|w|b})
2n = lim

n→∞

#({w ∈ An | |w|a > 2n/3})
2n458

= lim
n→∞

Pr(|Xn − n/2| > n/6) = 0459
460

where Pr(|Xn − n/2| > n/6) means the probability that the absolute value of the difference461

of the number Xn of the occurrences of a’s in a randomly chosen word of length n and its462

mean value n/2 is larger than n/6; its tends to zero by the weak law of large numbers. J463

5 REG-Immesurability of Primitive Words464

A non-empty word w ∈ A+ is said to be primitive if un = w implies u = w for any u ∈ A+
465

and n ∈ N. The set of all primitive words over A is denoted by QA. Because the case466

#(A) = 1 is meaningless (QA = A in this case), hereafter we always assume #(A) ≥ 2.467

Whether QA is context-free or not is a well-known long-standing open problem posed by468

Dömösi, Horváth and Ito [9]. Reis and Shyr [20] proved Q2
A = A+ \ {an | a ∈ A,n 6= 2},469

which intuitively means that every non-empty word w not a power of a letter is a product of470

two primitive words. From this result one may think that QA is “very large” in some sense.471

Actually, QA is somewhat “large” (it is dense in the sense of Definition 9), but we can show472

more stronger property as follows.473

I Theorem 37. δA(QA) = 1.474

Proof. It is enough to show that δA(QA) = 0 holds. One can easily observe that any natural475

number n ∈ N has at most 2
√
n divisors. In addition, for any non-primitive word w = vm of476

length n is uniquely determined by v (since m = n/|v|) and |v| ≤ n/2. Hence the number of477

non-primitive words of length n satisfies478

#
(
QA ∩An

)
≤ 2
√
n

bn/2c∑
i=0

#
(
Ai
)
≤ 2
√
n ·#(A)bn/2c+1

.479

By using the above estimation, we can deduce that480

#
(
QA ∩An

)
#(An) ≤ 2

√
n ·#(A)bn/2c+1

#(A)n
≤ 2

√
n

#(A)n/2−1481

and it tends to 0 if n tends to infinity (since we assume #(A) ≥ 2). Thus δA(QA) = 0. J482
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While QA is “very large” (co-null) as stated above, we can also prove that QA is REG+-483

immune. The proof relies on an analysis of the structure of the syntactic monoid of a non-null484

regular language. We assume that the reader has a basic knowledge of semigroup theory485

(cf. [19]): Green’s relations J ,R,L,H and a direct consequence of Green’s theorem (an486

H-class H in a semigroup S is a subgroup of S if and only if H contains an idempotent), in487

particular.488

I Theorem 38. Any non-null regular language contains infinitely many non-primitive words,489

and hence µREG(QA) = 0.490

Proof. Let L be a regular language over A with a positive density δA(L) > 0. We consider491

η : A∗ → M the syntactic morphism η and the syntactic monoid M of L, and let S be a492

subset of M satisfying η−1(S) = L. L is regular means that M is finite, and hence M has at493

least one ≤J -minimal element.494

We first show that S contains a ≤J -minimal element t. This is rather clear because,495

for any non-≤J -minimal element s, its language η−1(s) ⊆ A∗ is null: s is non-≤J -minimal496

means that there is an other element t such that t <J s (i.e., MtM ( MsM), whence497

s /∈MtM which implies that any word w ∈ η−1(t) is a forbidden word of η−1(s). Thus by498

the infinite monkey theorem η−1(s) is null.499

Clearly, we have tn ≤J t and thus tJ tn holds for any n > 1 by the ≤J -minimality of t.500

tJ tn implies that there is a pair of words x, y such that xtny = t. Since M is finite, xm is501

an idempotent for some m > 0 (i.e., x2m = xm). Thus we obtain t = xtny = x(t)tn−1y =502

x2(t)(tn−1y)2 = · · · = xmt(tn−1y)m = xmxmt(tn−1y)m = xmt whence t = tn(y(tn−1y)m−1).503

It follows that tR tn. Dually, we also obtain tL tn and hence we can deduce that tH tn holds.504

By the finiteness of M , there exists some n > 0 such that tn is an idempotent. Thanks to505

Green’s theorem, the H-equivalent class Ht of t is a subgroup of M with the identity element506

tn. Because η is surjective, we can take a word w′ from η−1(t). Let t′ = η(w′a) = tη(a) for507

some letter a ∈ A, then by the ≤J -minimality of t, we can take some words x, y ∈ A∗ so that508

η(xw′ay) = η(x)t′η(y) = t. Hence we can deduce that η−1(t) contains a non-empty word509

w = xw′ay. Then for any ε 6= w ∈ η−1(t) and m ≥ 1, we have510

η(wmn+1) = tmn+1 = (tn)m · t = t ∈ S511

which means that L ⊇ η−1(t) contains infinitely many non-primitive words wmn+1. J512

I Corollary 39 (of Theorem 37 and 38). QA has full REG-gap.513

I Remark 40. We emphasise that the assumption “L is non-null” in Theorem 38 is quite tight,514

since a slightly weaker assumption “L is of exponential growth” (i.e., #(L ∩An) is exponential515

for n) does not imply that L contains non-primitive words. A trivial counterexample is516

L0 = {a, b}∗c over A = {a, b, c}: #(L0 ∩An) = 2n−1 (n ≥ 1) is exponential but L0 only517

consists of primitive words. L0 has a cc as a forbidden word, hence it is null by the infinite518

monkey theorem. Thus L0 is not a counterexample of Theorem 38.519

6 Conclusion and Open Problems520

In this paper we proposed REG-measurability and showed that several context-free languages521

are REG-measurable, excluding Mm. Interestingly, it is shown that, like G and K, languages522

that have been considered as complex from a combinatorial viewpoint are, actually, easy523

to asymptotically approximate by regular languages. It is also interesting that a modified524

majority language M2 is just a deterministic context-free but it is complex from a measure525
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theoretic viewpoint. Its complement M2 is also deterministic context-free, and actually it is526

co-null but REG+-immune (i.e., has full REG-gap). This means that M2 is as complex as527

QA from a viewpoint of REG-measurability.528

The following fundamental problems are still open and we consider these to be future529

work.530

I Problem 41. Can we give an alternative characterisation of the null (resp. co-null)531

context-free languages (like Theorem 10)?532

I Problem 42. Can we give an alternative characterisation of the REG-measurable context-533

free languages?534

I Problem 43. Can we find a language class that can “separate” QA and CFL? i.e., is there535

C such that QA has full C-gap but no co-null context-free language has full C-gap, or QA is536

C-immeasurable but any co-null context-free language is C-measurable?537

The our results (Theorem 36, 37 and 38) tell us that the class REG of regular languages can538

not separate QA and CFL. However, it is still open whether the situation is the same or not539

when C = DetCFL,UnCFL,CFL or other extension of regular languages. Notice that if the540

answer of Problem 43 is “yes”, then QA is not context-free.541
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