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Abstract. In this report we describe a simple proof of Parikh’s theorem
a la Takahashi, based on a decomposition of derivation trees. The idea
of decomposition is appeared in her master’s thesis written in 1970.

1 Preliminaries

For a set S, we denote by |S| the cardinality of S. The set of natural numbers
including 0 is denoted by N. Let G = (V, D, Xj) be a context-free grammar
over an alphabet A where V (VN A = () is a finite set of non-terminals, D C
V x (VUAU{e})" is a finite set of derivation rules, and X, € V. The set of
(V, A)-trees, ranged over by T, is given by the following grammar:

T:=a (ac AU{e}) | X(Th, -, Tn) (X €V,n>1)

Namely, (V, A)-trees are trees whose internal nodes are non-terminals, and whose
leaves are letters in A or the special symbol € ¢ A. For a (V, A)-tree T, we denote
by N(T) the set of all non-terminals appeared in T, and denote by R(T) the
root of T'. The yield Y is a function from (V, A)-trees into A* defined inductively
as Y(a) = a,Y(e) = € where ¢ is the empty string, and V(X (T4,...,T,)) =
Y(Th) - Y(T,). We call a (V, AU {[]})-tree C context if exactly one leaf of C
is the special symbol [] ¢ A.We denote by C[T] the (V, A)-tree obtained by
replacing [] in C' by T. We define the set T(G) of derivation trees of G as

T(G) & {T:(V,A)-tree | R(T) = Xy, for each context C,
T = C[X(Ty,...,T,)] implies (X, R(TY) - R(T},)) € D}

and define £L(G) £ {Y/(T) | T € T(G)}.

For a non-terminal X € V, we call a (V, AU{X })-tree o # X an adjunct tree
if R(a) = X and exactly one leaf of « is X. For a (V, A)-tree T' and an adjunct
tree « such that R(T) = R(«a), we denote by «[T] the (V, A)-tree obtained by
replacing the leaf X in o by T. For a (V, A)-tree T and an adjunct tree «, if
the root X of « is appeared in T, i.e., T = C[X(T1,...,Ty)] for some context
C and (V, A)-trees T, ..., T,, we say that « is adjoinable to T, and we say that
T = Cla[X(T1,...,T,)]] is obtained from T adjoining « and write T' b, T".
Intuitively, an adjunct tree represents “pump” part, and adjoining corresponds
to “pumping” operation for trees. For example, X (Y (X),a) is adjoinable to
Z(X (b)) and we have Z(X (b)) Fx(v(x),a) Z(X(Y(X(D)),a)).
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Fig. 1. Example of simple (V, A)-tree T1, non-simple (V, A)-tree T>, and simple adjunct
tree a1

We call a (V, A)-tree T' simple if, for any path in T from the root to a leaf, no
non-terminal appears more than once. We call an adjunct tree a simple if, for any
path in T from a child of the root to a leaf, no non-terminal appears more than
once. See Fig. 1 for example. T is simple since all paths {(Z, X, a), (Z, X, b)} con-
tain Z and X exactly once. T» is not simple since the left-most path (X, Z, X, a)
contains X twice. However, the adjunct tree oy, which is obtained by remov-
ing the left-most leave a from T» (i.e., X(a) o, T3), is simple since all paths
from a child of the root to a leaf {(Z, X), (Z, X,b),(Y,a), (Y, X,b)} contain no

non-terminal more than once.
For a (V, A)-tree T and a set of adjunct trees S, we define

AT, S) 2 {T" | T=Toba, Th Fay - Fop, T =T,k €N, {a1,...,a3} C S}
AGHT,S) 2 {T' | T=Toba, TiFay - Fap, Te =Tk €N {ay,...,c0} = S}

Intuitively, Adj*(T,S) (resp. AdjT(T,S)) is the set of all (V, A)-trees obtained
from T adjoining each element in S arbitrary number of times (resp. arbi-
trary positive number of times). Clearly, Adj"(T,S) = Uycg Adj™(T,U) and
Adi™(T,0) = {T}. We say that S is adjoinable to T if Adj*(T,S) is non-
empty. Notice that if Adj™(T, S) is non-empty then there exists 77 € Adj*(T, S)
such that T" is obtained from T adjoining each element in S ezactly once, i.e.,
To =T ko, Ti Fay +  Fag Tis) = T" and S = {au, ..., a5 }. Moreover, such
T’ € AdjH(T, S) contains every root non-terminal of a € S, Adj"(7”,S) is also
non-empty and thus Adj™(T, S) should be infinite (if S is non-empty).

Let A = {ai,---,aq}. The Parikh mapping ®4 : A* — N? is defined by
Da(w) = (Jwlay,...,|wla,) where |w|, denotes the number of occurrences of
a in w. For a (V, A)-tree T and an adjunct tree o where X = R(a), we can
naturally extend the definition of the Parikh mapping as ®4(T) = ®4(Y(T))
and @4(a) £ G4(Y(a[X(€)])). By definition, we have ®4(L(G)) = D4(T(G))
for any context-free grammar G. A set S C N is called linear if S is of the form

S ={vo+z1v; + -+ + v | x; € N for each i}

for some k € N and some vectors vg, v1,. . ., vr € N%, and we call a finite union
of linear sets semilinear.



2 Proof a la Takahashi

Definition (decomposition). A decomposition A(T) of a (V, A)-tree T is
defined inductively as follows. If T = a € A U {¢}, define A(T) = (a,0). If
T=X(T,...,Tn), let (T7,51) = A(Th),..., (T}, Sn) = A(T,,) and define

(1) 2 (X(T},...,T),81U---US,) X &N(T))U---UN(T.)
(T {a}uS U---US,) X eN(T))U---UN(T!)

where T is the left-most X-rooted proper subtree of X (T7,...,T}), i.e., the left-

’ n

most X-rooted subtree of T} (where X € N(7}) and X ¢ N(Tj) for each 1 <

j < 1), and « is the adjunct tree obtained by replacing T’ by X in X (T7,...,T)).

See Fig. 1 for example. The non-simple tree T is decomposed as A(Tz) =
(X (a),{a1}); it is clear that X (a) is the left-most X-rooted proper subtree of
Ty and X(a) bo, To.

Let G = (V, D, Xy) be a context-free grammar over A.
Lemma. For any T € T(G) and (T7,5) = A(T), (1) T’ is simple and T” €
T(G), (2) S is a set of simple adjunct trees, and (3) T € Adj™ (7", S) C T(G).
Proof. Straightforward induction on T

We define S(G) & {T" | (T",S) = A(T) for some T € T(G) and S} and
define A(G) £ {a € S | (T",S) = A(T) for some T € T(G) and S}. Because
there are only finitely many simple (V, A)-trees (resp. simple adjunct trees),
S(G) and A(G) are both finite by Claim (1)—(2) of Lemma.
Proposition (Takahashi [1]). 7(G) = Urcgq) AT, A(G)).
Proof. Left-to-right inclusion C is clear by Lemma. Right-to-left inclusion D
is shown by induction. The base case T € S(G) C T(G) is trivial. Assume
T" € T(G). Then for any a € A(G) such that « is adjoinable to T”, since « is
extracted from some valid derivation tree in 7(G), T" F, T" is also in T(G).
Theorem (Parikh [2]). $4(L(G)) is semilinear.

Proof.

A(L(@) =24(T(@)= |J U @aadi’(1,9))
TeS(G) SCAQ)
holds by Proposition. If S is not adjoinable to T then &4 (Adj (T, S)) = (). Oth-
erwise, ®4(Adj (T, S)) = {®a(T) + Zﬁll riPa(a;) | S = {oa,..., a9/}, 2; €
N\{0}} holds since T F,, T implies 4 (T") = Pa4(T") + P a(c). In both cases,
&4 (Adj (T, 9)) is semilinear, hence those finite union @4 (£(G)) is semilinear.
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