Context-Freeness of Word-MIX Languages (A paper accepted for DLT 2020)

Ryoma Sin'ya (Akita University) DLT 2021 Aug 16.

に限る) な置 (漢字タテ書き

Outline

- 1. Introduction
- 2. Background
- 3. Main Result
- 4. Conclusion

A word puzzle

For two words $u, v \in A^*$, we denote by $|u|_v$ the number of occurrences of v in u as a factor.

Example : | *ab*

Question 1: $Is Z_2 = \{w \in \{a, b\}^*$

Answer: Yes! $Z_2 = \varepsilon + a(a^*b^+a)^* + b(b^*a^+b)^*$, indeed.

$$paba|_{aba} = 2$$

$$||w|_{ab} = |w|_{ba}$$
 regular?

A word puzzle

For two words $u, v \in A^*$, we denote by $|u|_v$ the number of occurrences of v in u as a factor.

Example : | *ab*

Question 2: Is $Z_3 = \{w \in \{a, b, c\}^* \mid |w|_{ab} = |w|_{ba}\}$ regular?

Answer: No! The regularity depends not only parameter words, but also the alphabet.

$$paba|_{aba} = 2$$

A word puzzle

For two words $u, v \in A^*$, we denote by $|u|_v$ the number of occurrences of v in u as a factor.

Example : | ab

In general, the language $L_A(w_1, ..., w_n)$ which we call **Word-MIX language** (can be non-context-free.

 $MIX = L_A(a, b, c) \text{ when}$

$$paba|_{aba} = 2$$

$$w_k) = \{ w \in A^* \mid |w|_{w_1} = \dots = |w|_{w_k} \},$$

(defined by *k* parameter words),

re
$$A = \{a, b, c\}$$
 for example.

This talk

Theorem (S. 2020) For given parameter words $w_1, \ldots, w_k \in A^*$ $(k \ge 2)$, the following problems are decidable:

1: Is
$$L_A(w_1, ..., w_k) = \{ w \in A^* \mid k \in A^* \mid k \in A^* \}$$

2: Is $L_A(w_1, \ldots, w_k)$ context-free?

, $w_k \in A^*$ $(k \ge 2)$, the following $\|w\|_{w_1} = \dots = \|w\|_{w_k}$ regular?

Outline

- 1. Introduction
- 2. Background
- 3. Main Result
- 4. Conclusion

Invited speakers Home

The 22nd International Conference on Developments in Language Theory (DLT) 2018) will be held in Tokyo, Japan on September 10-14th, 2018. The conference is organized by Algorithmic "Oritatami" Self-Assembly Lab, The University of Electro-Communications (UEC) as part of UEC 100th Anniversary Commemorative Event.

The registration is NOW OPEN!!

Important Dates

Deadline for submission

April 30th, 2018 (AoE) May 7th, 2018 (firm AoE)

Notification to authors

June 1st, 2018 June 6th, 2018 (firm) June 8th, 2018 (firm)

Camera-ready version

June 20th, 2018 June 22nd, 2018 (firm)

Background

Theorem [Lidbetter et al. DLT 2018]: The regularity of $L_A(w_1, w_2)$ is decidable in time $O(|A||w_1||w_2|)$.

Theorem [Lidbetter et al. DLT 2018]: $L_A(w_1, w_2)$ is finite if and only if |A| = 1 and $x \neq y$.

What about the finiteness for general case?

Theorem [de Bruijn 1946]: If $|w_1| = \cdots = |w_k|$ then $L_A(w_1, \ldots, w_k)$ is infinite.

de Bruijn graph

Proof: Consider the case $A = \{a, b\}$ and $|w_1| = \cdots = |w_k| = 3$.

Consider the two dimensional de Bruijn graph $\mathscr{G}_A^2 = (A^2, E)$ where $E = \{ (a_1a_2, a_3, a_2a_3) \mid a_1, a_2, a_3 \in A \}.$ \mathscr{G}_{4}^{2} has an Eulerian cycle as follows:

The word corresponding this cycle is w = baaababbba. And $w^* \subseteq L_A(w_1, ..., w_k)$ holds since $|w^n|_v = n$ for any $n \ge 0$ and $v \in A^3$.

Theorem [de Bruijn 1946]: If $|w_1| = \cdots = |w_k|$ then $L_A(w_1, \ldots, w_k)$ is infinite.

Background

Theorem [Lidbetter et al. DLT 2018]: The regularity of $L_A(w_1, w_2)$ is decidable in time $O(|A||w_1||w_k|)$.

Theorem [Lidbetter et al. DLT 2018]: $L_A(w_1, w_2)$ is finite if and only if |A| =

What about the regularity for general case? Corollary of [Cadilhac et al. DLT 2012]: The regularity for WMIX languages is decidable.

$$= 1$$
 and $x \neq y$.

Constrained automaton [Klaedtke-Rueß 2003]

- (\mathscr{A}, S) accepts $w \Leftrightarrow$ there is an accepting run ρ in \mathscr{A} labelled by w and its Parikh image $\Phi(\rho)_i = \#$ of occurrences of *i*-th transition rule in ρ is in S.

• A constrained automaton is a pair (\mathscr{A}, S) where \mathscr{A} is usual finite automaton and $S \subseteq \mathbb{N}^d$ is a semi-linear set whose dimension d equals the number of transition rules in \mathscr{A} (assume that the transition rules are linearly ordered).

 $L(\mathscr{A}) = \{a, b, c\}^*$

But $L((\mathscr{A}, S)) = MIX$ for $S = \{(n, n, n) \mid n \in \mathbb{N}\} \subseteq \mathbb{N}^3$.

Unambiguous CA (UnCA)

• A constraint automaton (\mathscr{A}, S) is **unambiguous** if \mathscr{A} is unambiguous, i.e., for each word accepted by \mathscr{A} there is only one accepting run.

- $L_A(w_1, \ldots, w_k)$ can be recognised by an UnCA whose underlying automaton is the de Bruijn graph of dimension max $\{|w_i| \mid 1 \le i \le k\}$.
- Theorem [Cadilhac et al. DLT 2012]: The regularity for UnCA is decidable.
- Remark: their proof uses the regularity condition of bounded languages [GS1966].

No different accepting runs!

Background

Theorem [Lidbetter et al. DLT 2018]: The regularity of $L_A(w_1, w_2)$ is decidable in time $O(|A||w_1||w_k|)$.

Theorem [Lidbetter et al. DLT 2018]: $L_A(w_1, w_2)$ is finite if and only if |A| = 1 and $x \neq y$.

Corollary of [Cadilhac et al. DLT 2012]: The regularity for WMIX languages is decidable.

- What about the regularity for general case?
- What about the **context-freeness** for general case?

Outline

- 1. Introduction
- 2. Background
- 3. Main Result
- 4. Conclusion

Main result

- Theorem (S. 2020) For given parameter words $w_1, \ldots, w_k \in A^*$ $(k \ge 2)$, the following problems are decidable:
- 1: Is $L_A(w_1, ..., w_k) = \{ w \in A^* \mid |w|_{w_1} = \cdots = |w|_{w_k} \}$ regular?
- 2: Is $L_A(w_1, \ldots, w_k)$ context-free?

, $w_k \in A^*$ $(k \ge 2)$, the following $\|w\|_{w_1} = \dots = \|w\|_{w_k}$ regular?

(very rough) Sketch of the proof

vectors spaces $\mathbf{V}_1, \dots, \mathbf{V}_n \subseteq \mathbb{Q}^k$ from the de Bruijn graph of dimension $\max\{|w_i| \mid 1 \le i \le k\}.$

Define the **dimension** of $L = L_A(w_1, ..., w_k)$ as $\dim(L) = \max\{\dim(\mathbf{V}_i) \mid 1 \le i \le n\}.$

automaton with such registers can recognize the WMIX language L. For example, $\dim(L_A(a, b)) = 2$ and it can be recognised by a pushdown automaton (stack can be used as a single register).

We showed: (1) L is regular if and only if $\dim(L) \leq 1$. (2) L is context-free if and only if $\dim(L) \leq 2$.

For given parameter words w_1, \ldots, w_k , we can calculate finitely many (basis of)

Roughly speaking, dim(L) - 1 represents the minimum # of registers that an

MIX: a simplest example of dimension three MIX = $L_A(a, b, c)$ where $A = \{a, b, c\}$.

- Consider the set of simple cycles $S = \{\gamma_1, \gamma_2, \gamma_3\}$:
- This set S has the following property:

(\bigstar) for any $n \ge 0$ there is a word $w \in MIX$

such that the walk corresponding w in this de Bruijn graph passes each cycle in Smore than *n* times, respectively.

For example $a^3b^3c^3$ passes $\gamma_1, \gamma_2, \gamma_3$ two times, respectively.

We call such *S* **pumpable** (in MIX).

Consider the set of **simple** cycles $S = \{\gamma_1, \gamma_2, \gamma_3\}$:

The set of words corresponding to S is $W = \{a, b, c\}$.

Now the parameter words are a, b and c. We can associate its *occurrence vectors* in W as $\{(|w|_a, |w|_b, |w|_c) | w \in W\}$ $= \{(1,0,0), (0,1,0), (0,0,1)\}.$

Define dim(S) as the maximum # of linearly independent occurrence vectors in W. In this case dim(S) = 3.

In general, the dimension of $L = L_A(w_1, ..., w_k)$ is defined as $dim(L) = \max\{dim(S) \mid S \text{ is pumpable in } L\}$ (Here we should consider the de Bruijn graph of dimension max{ $|w_i| | 1 \le i \le k$ }).

In this case dim(MIX) = 3. MIX is not context-free, an automaton should count $|w|_a - |w|_b$ and $|w|_b - |w|_c$ simultaneously (two registers are required).

MIX: a simplest example of dimension three

In general, the dimension of $L = L_A(w_1, ..., w_k)$ is defined as $dim(L) = max{dim(S) | S is pumpable in L}$ (Here we should consider the de Bruijn graph of dimension max{ $|w_i| | 1 \le i \le k$ }.

Note: It is decidable whether a given set of cycles S in L is pumpable or not. Because we can formalise "S is pumpable in L" by a Presburger arithmetic formula.

- MIX = $L_A(a, b, c)$ where $A = \{a, b, c\}$.

Conclusion and future work

- We showed that the regularity and context-freeness for WMIX languages are decidable.
 - Our approach is calculating the "dimension" of a WMIX language L, which represents the minimum # of registers (minus 1) for accepting L.
- I think we can generalise the notion "dimension" for more general languages of the form

$$L_A(\varphi; w_1, \dots, w_k) = \left\{ w \in L \right\}$$

where φ is a Presburger formula with *n* free variables x_1, \ldots, x_k ,

hence the context-freeness for such languages is still decidable.

- $A^* \mid \varphi(|w|_{w_1}, \dots, |w|_{w_k}) \text{ is true } \bigg\}$

