Carathéodory Extensions of Subclasses of Regular Languages

Ryoma Sin'ya (Akita University) DLT 2021 Aug 17.

Outline

- 1. **Background: density and measurability**
- 2. Carathéodory extensions of local varieties
- 3. Conclusion

Density of formal lan

The density of a language L over A is defined as

$$\delta_A(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L \cap A^i)}{\#(A^i)}.$$

→ The value
$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L_{\perp} \cap A^i)}{\#(A^i)}$$
 can k

infinitely many times, hence $\delta_A(L)$ diverges.

Guages
Example 1:
$$\delta_A((AA)^*) = \frac{1}{2}$$
.
Example 2: $\delta_A(aA^*) = \frac{1}{\#(A)}$.

Example 3: $L_1 = \{ w \in A^* \mid 3^n \le |w| < 3^{n+1} \text{ for some even } n \}$ does **not** have a density.

be larger than 2/3 and smaller than 1/3

Density of formal lang

The density of a language L over A is defined as

$$\delta_A(L) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \frac{\#(L \cap A^i)}{\#(A^i)}$$

Example 3: $L_{\perp} = \{ w \in A^* \mid 3^n \le |w| < 3^{n+1} \text{ for some even } n \}$ does **not** have a density.

Theorem (cf. [Berstel 1973]): Every regular language *do have a rational density*.

guages
Example 1:
$$\delta_A((AA)^*) = \frac{1}{2}$$
.
Example 2: $\delta_A(aA^*) = \frac{1}{\#(A)}$.

\mathscr{C} -measurability [SOFSEM 2021] A^*

L is said to be \mathscr{C} -measurable if there exists an *infinite sequence of pairs of languages* $(M_n, K_n)_{n \in \mathbb{N}}$ in \mathscr{C} such that $M_n \subseteq L \subseteq K_n$ and $\lim_{n \to \infty} \delta_A(K_n \setminus M_n) = 0$.

Example of a regular measurable language

Theorem [SOFSEM2021]:

regular measurable.

Proof: Let
$$L_k = \{w \in A^* \mid |w|_a =$$

the # of occurrences of a in w

Then, for each $k \geq 1$, $D \subseteq L_k$ a

Thus the infinite sequence $(\emptyset, L_k)_{k>1}$ converges to D.

The semi-Dyck language $D = \{\varepsilon, ab, aabb, abab, ...\}$ over $A = \{a, b\}$ is

 $|w|_{k} \mod k$ for each $k \ge 1$. 1

and
$$\delta_A(L_k) = \frac{1}{k} \to 0 \text{ (if } k \to \infty \text{)}.$$

Note: there is no regular language L such that $D \subseteq L$ and $\delta_A(L) = 0$.

Known results [SOFSEM 2021]

$M_2 = \{w \in \{a, b\}^* \mid |w|_a > 2|w|_b\}$ $L_{|} = \{ w \in A^* \mid 3^n \le |w| < 3^{n+1} \text{ for some even } n \}$

All regular measurable languages

Many complex CFLs

There are uncountably many regular measurable languages

Measurability à la Carathéodory

The outer- \mathscr{C} -measure (over A) of $L \subseteq A^*$ is defined as $\overline{\mu}_{\mathscr{C}}(L) = \inf\{\delta_A(K) \mid L \subseteq K \in \mathscr{C}_A\}$ where \mathscr{C}_A is the class of all languages in \mathscr{C} over A.

Theorem [S]: For any language $L \subseteq A^*$ (with a certain density condition), L is C-measurable if and only if it satisfies the Carathéodory condition: $\overline{\mu}_{\mathscr{C}}(M) = \overline{\mu}_{\mathscr{C}}(M \cap L) + \overline{\mu}_{\mathscr{C}}(M \cap \overline{L})$ for any language $M \subseteq A^*$.

of a class \mathscr{C} .

We call $\operatorname{Ext}_A(\mathscr{C}) = \{L \subseteq A^* \mid L \text{ is } \mathscr{C}\text{-measurable}\}\$ the **Carathéodory extension**

Motivation of this work

What about "*miniatures*" of $Ext_A(REG) \cap CFL$? e.g., $\operatorname{RExt}_A(\mathscr{L}) = \{L \in \operatorname{REG}_A \mid L \text{ is } \mathscr{L}\text{-measurable}\}$

- The class $\text{Ext}_A(\text{REG}) = \{L \subseteq A^* \mid L \text{ is REG-measurable}\}$ and the class $Ext_A(REG) \cap CFL$ are somewhat hard to analyse.
 - a **regular extension** of some subclass \mathscr{L} of regular languages.

Outline

1. Background: density and measurability 2. <u>Carathéodory extensions of local varieties</u>

3. Conclusion

Closure properties

- Theorem [S]: If language classes $\mathscr{C} \subseteq \mathscr{D}$ satisfies the following conditions: (1) every language in \mathscr{D} has the density, (2) \mathscr{C} and \mathscr{D} are closed under left and right quotients, then $\operatorname{Ext}_A(\mathscr{C}) \cap \mathscr{D}_A$ is closed under left and right quotients. Proof idea: Let $L \in \mathscr{D}_A$ be a \mathscr{C} -measurable language.
- There exists a convergent sequence (I

We can show that $(w^{-1}K_n, w^{-1}M_n)$ converges to $w^{-1}L$ (albeit that some non-trivial calculation on densities is required).

$$K_n, M_n$$
) of L in \mathscr{C}_A .

Closure properties

- Theorem [S]: If language classes $\mathscr{C} \subseteq \mathscr{D}$ satisfies the following conditions: (1) every language in \mathscr{D} has the density,
- then $\operatorname{Ext}_A(\mathscr{C}) \cap \mathscr{D}_A$ is closed under left and right quotients.
- Theorem [S]: If language classes $\mathscr{C} \subseteq \mathscr{D}$ satisfies the following conditions: (1) every language in \mathscr{D} has the density, (2) \mathscr{C} and \mathscr{D} are closed under Boolean operations, then $\operatorname{Ext}_A(\mathscr{C}) \cap \mathscr{D}_A$ is closed under Boolean operations.

- (2) \mathscr{C} and \mathscr{D} are closed under left and right quotients,

Local varieties and Eilenberg theorem

A family of regular languages \mathscr{L} over A is called *local variety* [Adámek et al. 2014] if it is closed under left-and-right quotients and Boolean operations

There is a corresponding notion for a *family of finite monoids* generated by A, called *local pseudovariety*.

And there is an *Eilenberg theorem for local varieties* [Gehrke et al. 2008] roughly stating "there is a *natural bijection* between local varieties and local pseudovarieties".

Star-free languages

A language L is said to be star-free if it can be represented as a finite applications of Boolean operations and concatenations to finite languages. The class SF of all star-free languages over A is a local variety.

Theorem [Schutzenberger 1965]: L is star-free if and only if the syntactic monoid M_L of L is aperiodic, i.e., M_{I} has no non-trivial subgroup.

Regular extension of local varieties

- Theorem [S]:
- (extensive) $\mathscr{L} \subseteq \operatorname{RExt}_A(\mathscr{L})$ (monotone) $\mathscr{L} \subseteq \mathscr{L}' \Rightarrow \operatorname{RExt}_A(\mathscr{L}) \subseteq \operatorname{RExt}_A(\mathscr{L}')$ (idempotent) $\operatorname{RExt}_A(\operatorname{RExt}_A(\mathscr{L})) = \operatorname{RExt}_A(\mathscr{L})$
- Theorem [S]: SF \subseteq RExt_A(SF) \subseteq REG_A if A contains at least two letters, i.e., $RExt_A$ extends SF non-trivially.
- Note: $SF \subsetneq RExt_A(SF)$ is clear because $(aa)^* \notin SF$, but $(aa)^* \subseteq \overline{A^*(A \setminus \{a\})A^*} \in SF$ and hence $(aa)^* \in RExt_A(SF)$.

For a local variety \mathscr{L} over A, $\operatorname{RExt}_A(\mathscr{L}) = \{L \in \operatorname{REG}_A \mid L \text{ is } \mathscr{L}\text{-measurable}\}$ is also a local variety. Moreover, RExt_A is a closure operator on local varieties.

Regular extension of SF

Lemma [S]:

even and odd length.

Theorem [S]: SF \subseteq RExt_A(SF) \subseteq REG_A if A contains at least two letters, i.e., RExt_A extends SF non-trivially.

Note: by Lemma above, we can deduce that any star-free subset of $(AA)^*$ is of density zero and hence $(AA)^* \notin \operatorname{RExt}_A(\operatorname{SF})$.

If the density of a star-free language $L \subseteq A^*$ is positive, then L contains words of

Regular extension of SF

Lemma [S]:

even and odd length.

Proof sketch:

Claim 1

" $\delta^*_A(L) > 0$ " and " M_L is finite" imply

S intersects with the minimal ideal K of M_L .

Claim 2

The inverse image of *K* is of density 1 (infinite monkey theorem), thus it contains word of odd length, say, w. Let $\eta(w) = m$.

Claim 3

there exist u and v such that $\eta(uw^i v) = \eta(u)m^i\eta(v) = t = \eta(u)m^{i+1}\eta(v) = \eta(uw^{i+1}v)$.

If the density of a star-free language $L \subseteq A^*$ is positive, then L contains words of

*zero-one = the class of all regular languages with density zero or one

Conclusion and future work

- We consider Carathéodory extensions of local varieties of regular languages. These extensions could be considered as a "miniature" of the class of regular measurable context-free languages: a difficult object.
- By Eilenberg theorem for local varieties, there exists a closure operator $MExt_A(\mathscr{M}) = F^{-1}(RExt_A(F(\mathscr{M})))$

on local pseudovarieties of finite monoids

Can we characterize this operator in purely algebraic way?

• We showed that the extension operator $RExt_A$ is a closure operator on local varieties, and it extends SF non-trivially, and it does not extend some other local varieties (FIN or ZO).

- (where F is the natural bijection between local varieties and local pseudovarieties).

Thanks!

に限る) なイプ部分の配置

(Akita-Inu)