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A history of constructivism

I History
I Arithmetization of mathematics (Kronecker, 1887)
I Three kinds of intuition (Poincaré, 1905)
I French semi-intuitionism (Borel, 1914)
I Intuitionism (Brouwer, 1914)
I Predicativity (Weyl, 1918)
I Finitism (Skolem, 1923; Hilbert-Bernays, 1934)
I Constructive recursive mathematics (Markov, 1954)
I Constructive mathematics (Bishop, 1967)

I Logic
I Intuitionistic logic (Heyting, 1934; Kolmogorov, 1932)



Language

We use the standard language of (many-sorted) first-order
predicate logic based on

I primitive logical operators ∧,∨,→,⊥, ∀, ∃.

We introduce the abbreviations

I ¬A ≡ A→⊥;

I A↔ B ≡ (A→ B) ∧ (B → A).



The BHK interpretation

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of the
logical operators is the following.

I A proof of A ∧ B is given by presenting a proof of A and a
proof of B.

I A proof of A ∨ B is given by presenting either a proof of A or
a proof of B.

I A proof of A→ B is a construction which transforms any
proof of A into a proof of B.

I Absurdity ⊥ has no proof.

I A proof of ∀xA(x) is a construction which transforms any t
into a proof of A(t).

I A proof of ∃xA(x) is given by presenting a t and a proof of
A(t).



The BHK interpretation

I A proof of ∀x∃yA(x , y) is a construction which transforms
any t into a proof of ∃yA(t, y);

I A proof of ∃yA(t, y) is given by presenting an s and a proof of
A(t, s).

Therefore

I a proof of ∀x∃yA(x , y) is a construction which transforms any
t into s and a proof of A(t, s).

Remark 1

I A proof of ¬(¬A ∧ ¬B) is not a proof of A ∨ B.

I A proof of ¬∀x¬A(x) is not a n proof of ∃xA(x).



Natural Deduction System

We shall use D, possibly with a subscript, for arbitrary deduction.

We write
Γ
D
A

to indicate that D is deduction with conclusion A and assumptions
Γ.



Deduction (Basis)

For each formula A,
A

is a deduction with conclusion A and assumptions {A}.



Deduction (Induction step, →I)

If
Γ
D
B

is a deduction, then
Γ
D
B

A→ B
→I

is a deduction with conclusion A→ B and assumptions Γ \ {A}.
We write

[A]
D
B

A→ B
→I



Deduction (Induction step, →E)

If
Γ1
D1

A→ B

Γ2
D2
A

are deductions, then
Γ1
D1

A→ B

Γ2
D2
A

B
→E

is a deduction with conclusion B and assumptions Γ1 ∪ Γ2.



Example

[¬¬A]

[¬¬(A→ B)]

[¬B]
[A→ B] [A]

B
→E

⊥ →E

¬(A→ B)
→I

⊥ →E

¬A →I

⊥ →E

¬¬B →I

¬¬A→¬¬B →I

¬¬(A→ B)→ (¬¬A→¬¬B) →I



Minimal logic

[A]
D
B

A→ B
→I

D1
A→ B

D2
A

B
→E

D1
A

D2
B

A ∧ B
∧I

D
A ∧ B
A

∧Er

D
A ∧ B
B

∧El

D
A

A ∨ B
∨Ir

D
B

A ∨ B
∨Il

D1
A ∨ B

[A]
D2
C

[B]
D3
C

C
∨E



Minimal logic

D
A

∀yA[x/y ] ∀I
D
∀xA

A[x/t]
∀E

D
A[x/t]

∃xA ∃I

D1

∃yA[x/y ]

[A]
D2
C

C
∃E

I In ∀E and ∃I, t must be free for x in A.

I In ∀I, D must not contain assumptions containing x free, and
y ≡ x or y 6∈ FV(A).

I In ∃E, D2 must not contain assumptions containing x free
except A, x 6∈ FV(C ), and y ≡ x or y 6∈ FV(A).



Example

[(A→ B) ∧ (A→ C )]

A→ B
∧Er [A]

B
→E

[(A→ B) ∧ (A→ C )]

A→ C
∧El [A]

C
→E

B ∧ C
∧I

A→ B ∧ C
→I

(A→ B) ∧ (A→ C )→ (A→ B ∧ C )
→I



Intuitionistic logic

Intuitionistic logic is obtained from minimal logic by adding the
intuitionistic absurdity rule (ex falso quodlibet).

If
Γ
D
⊥

is a deduction, then
Γ
D
⊥
A

⊥i

is a deduction with conclusion A and assumptions Γ.



Example

[¬¬A→¬¬B]

[¬(A→ B)]

[¬A] [A]

⊥ →E

B
⊥i

A→ B
→I

⊥ →E

¬¬A →I

¬¬B →E

[¬(A→ B)]

[B]

A→ B
→I

⊥ →E

¬B →I

⊥
¬¬(A→ B)

→I

(¬¬A→¬¬B)→¬¬(A→ B)
→I



Example

[A ∨ B]

[¬A] [A]

⊥ →E

B
⊥i [B]

B
∨E

¬A→ B
→I

A ∨ B → (¬A→ B)
→I



Classical logic

Classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule (reductio ad
absurdum).

If
Γ
D
⊥

is a deduction, then
Γ
D
⊥
A

⊥c

is a deduction with conclusion A and assumption Γ \ {¬A}.



Example (classical logic)

The double negation elimination (DNE):

[¬¬A] [¬A]
⊥ →E

A
⊥c

¬¬A→ A
→I



Example (classical logic)

The principle of excluded middle (PEM):

[¬(A ∨ ¬A)]

[¬(A ∨ ¬A)]
[A]

A ∨ ¬A ∨Ir

⊥ →E

¬A →I

A ∨ ¬A ∨Il

⊥ →E

A ∨ ¬A ⊥c



Example (classical logic)

De Morgan’s law (DML):

[¬(¬A ∨ ¬B)]

[¬(¬A ∨ ¬B)]

[¬(A ∧ B)]

[A] [B]

A ∧ B
∧I

⊥ →E

¬A →I

¬A ∨ ¬B ∨Ir

⊥ →E

¬B →I

¬A ∨ ¬B ∨Il

⊥ →E

¬A ∨ ¬B ⊥c

¬(A ∧ B)→¬A ∨ ¬B →I



RAA vs →I

⊥c : deriving A by deducing absurdity (⊥) from ¬A.

[¬A]
D
⊥
A

⊥c

→I: deriving ¬A by deducing absurdity (⊥) from A.

[A]
D
⊥
¬A →I



A short history

I Aczel (2006) introduced the notion of a set-generated class
for dcpos using some terminology from domain theory.

I van den Berg (2013) introduced the principle NID on
non-deterministic inductive definitions and set-generated
classes in the constructive Zermelo-Frankel set theory CZF.

I Aczel et al. (2015) characterized set-generated classes using
generalized geometric theories and a set generation axiom
SGA in CZF.

I I-Kawai (2015) constructed coequalisers in the category of
basic pairs in the extension of CZF with SGA.

I I-Nemoto (2016) introduced another NID principle, called
nullary NID, and proved that nullary NID is equivalent to
Fullness in a subsystem ECST of CZF.



The elementary constructive set theory

The language of a constructive set theory contains variables for
sets and the binary predicates = and ∈. The axioms and rules are
those of intuitionistic predicate logic with equality. In addition,
ECST has the following set theoretic axioms:

Extensionality: ∀a∀b[∀x(x ∈ a↔ x ∈ b)→ a = b].

Pairing: ∀a∀b∃c∀x(x ∈ c ↔ x = a ∨ x = b).

Union: ∀a∃b∀x [x ∈ b ↔∃y ∈ a(x ∈ y)].

Restricted Separation:

∀a∃b∀x(x ∈ b ↔ x ∈ a ∧ ϕ(x))

for every restricted formula ϕ(x). Here a formula
ϕ(x) is restricted, or ∆0, if all the quantifiers
occurring in it are bounded, i.e. of the form ∀x ∈ c
or ∃x ∈ c .



The elementary constructive set theory

Replacement:

∀a[∀x ∈ a∃!yϕ(x , y)→∃b∀y(y ∈ b ↔∃x ∈ aϕ(x , y))]

for every formula ϕ(x , y).

Strong Infinity:

∃a[0 ∈ a ∧ ∀x(x ∈ a→ x + 1 ∈ a)

∧ ∀y(0 ∈ y ∧ ∀x(x ∈ y → x + 1 ∈ y)→ a ⊆ y)],

where x + 1 is x ∪ {x}, and 0 is the empty set ∅.



The elementary constructive set theory

I Using Replacement and Union, the cartesian product a× b of
sets a and b consisting of the ordered pairs
(x , y) = {{x}, {x , y}} with x ∈ a and y ∈ b can be
introduced in ECST.

I A relation r between a and b is a subset of a× b. A relation
r ⊆ a× b is total (or is a multivalued function) if for every
x ∈ a there exists y ∈ b such that (x , y) ∈ r .

I A function from a to b is a total relation f ⊆ a× b such that
for every x ∈ a there is exactly one y ∈ b with (x , y) ∈ f .



The elementary constructive set theory

The class of total relations between a and b is denoted by mv(a, b):

r ∈ mv(a, b)⇔ r ⊆ a× b ∧ ∀x ∈ a∃y ∈ b((x , y) ∈ r).

The class of functions from a to b is denoted by ba:

f ∈ ba⇔f ∈ mv(a, b)

∧ ∀x ∈ a∀y , z ∈ b((x , y) ∈ f ∧ (x , z) ∈ f → y = z).



The constructive set theory CZF

The constructive set theory CZF is obtained from ECST by
replacing Replacement by

Strong Collection:

∀a[∀x ∈ a∃yϕ(x , y)→∃b(∀x ∈ a∃y ∈ bϕ(x , y)

∧ ∀y ∈ b∃x ∈ aϕ(x , y))]

for every formula ϕ(x , y),



The constructive set theory CZF

and adding

Subset Collection:

∀a∀b∃c∀u[∀x ∈ a∃y ∈ bϕ(x , y , u)→
∃d ∈ c(∀x ∈ a∃y ∈ dϕ(x , y , u)

∧ ∀y ∈ d∃x ∈ aϕ(x , y , u))]

for every formula ϕ(x , y , u), and

∈-Induction:
∀a(∀x ∈ aϕ(x)→ ϕ(a))→∀aϕ(a),

for every formula ϕ(a).



The constructive set theory CZF

I In ECST, Subset Collection implies

Fullness:

∀a∀b∃c(c ⊆ mv(a, b)

∧ ∀r ∈ mv(a, b)∃s ∈ c(s ⊆ r)),

and Fullness and Strong Collection imply Subset Collection.

I The notable consequence of Fullness is that ba forms a set:

Exponentiation: ∀a∀b∃c∀f (f ∈ c ↔ f ∈ ba).

I For a set S , we write Pow(S) for the power class of S which
is not a set in ECST nor in CZF:

a ∈ Pow(S)⇔ a ⊆ S .



Set-generated classes

Definition 2
Let S be a set, and let X be a subclass of Pow(S). Then X is
set-generated if there exists a subset G , called a generating set, of
X such that

∀α ∈ X∀x ∈ α∃β ∈ G (x ∈ β ⊆ α).

Remark 3
The power class Pow(S) of a set S is set-generated with a
generating set

{{x} | x ∈ S}.



Rules

Definition 4
Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b
of S . A rule is called

I nullary if a is empty;

I elementary if a is a singleton;

I finitary if a is finitely enumerable.

A subset α of S is closed under a rule (a, b) if

a ⊆ α→ b G α.

For a set R of rules on S , we call a subset α of S R-closed if it is
closed under each rule in R.

Remark 5
Note that if a rule is nullary or elementary, then it is finitary.



NID principles

Definition 6
Let NID denote the principles that

I for each set S and set R of rules on S , the class of R-closed
subsets of S is set-generated.

The principles obtained by restricting R in NID to a set of nullary,
elementary and finitary rules are denoted by NID0, NID1 and
NID<ω, respectively.

Remark 7
Note that NID<ω implies NID0 and NID1.



The nullary NID

Theorem 8 (I-Nemoto 2015)

The following are equivalent over ECST.

1. NID0.

2. Fullness.

Proposition 9 (I-Nemoto 2015)

NID1 implies NID0.

Remark 10

NID0 NID1
oo NID<ω

oo



Basic pairs

Definition 11
A basic pair is a triple (X ,, S) of sets X and S , and a relation 
between X and S .



Relation pairs

Definition 12
A relation pair between basic pairs X1 = (X1,1, S1) and
X2 = (X2,2, S2) is a pair (r , s) of relations r ⊆ X1 × X2 and
s ⊆ S1 × S2 such that

2 ◦ r = s ◦ 1,

that is, the following diagram commute.

X1
1 //

r

��

S1

s

��
X2 2

// S2



Relation pairs

Definition 13
Two relation pairs (r1, s1) and (r2, s2) between basic pairs X1 and
X2 are equivalent, denoted by (r1, s1) ∼ (r2, s2), if

2 ◦ r1 = 2 ◦ r2,

or equivalently s1 ◦ 1 = s2 ◦ 1.



The category of basic pairs

Notation 14
For a basic pair (X ,, S), we write

♦D =  (D) and extU = −1 (U)

for D ∈ Pow(X ) and U ∈ Pow(S).

Proposition 15

Basic pairs and relation pairs form a category BP.



Coequalisers

Definition 16

A coequaliser of a parallel pair A
f
⇒
g

B in a category C is a pair of

an object C and a morphism B
e→ C such that e ◦ f = e ◦ g , and it

satisfies a universal property in the sense that for any morphism

B
h→ D with h ◦ f = h ◦ g , there exists a unique morphism C

k→ D
for which the following diagram commutes.

A
f //
g

// B
e //

h ��@
@@

@@
@@

C

k
��
D



Coequalisers

Proposition 17 (I-Kawai 2015)

Let X1

(r1,s1)

⇒
(r2,s2)

X2 be a parallel pair of relation pairs in BP. If a

subclass

Q = {U ∈ Pow(S2) | ext1 s−1
1 (U) = ext1 s

−1
2 (U)}

of Pow(S2) is set-generated, then the parallel pair has a
coequaliser.



A NID principle

Definition 18
Let S be a set. Then a subset α of S is biclosed under a rule (a, b)
if

a G α↔ b G α.

For a set R of rules on S , we call a subset α of S R-biclosed if it is
biclosed under each rule in R.

Definition 19
Let NIDbi denotes the principles that

I for each set S and set R of rules on S , the class of R-biclosed
subsets of S is set-generated.



A NID principle

Proposition 20

I NID1 implies NIDbi.

I NIDbi implies NID0.

Remark 21

NID0 NIDbi
oo NID1

oo NID<ω
oo



BP has coequalisers

Theorem 22
The following are equivalent over ECST.

1. NIDbi.

2. BP has coequalisers.

Remark 23
Since BP has small coproducts, in the presence of NIDbi, the
category BP is cocomplete.



Work in progress

Definition 24
A rule (a, b) on a set S is called n-ary if there exists a surjection
n → a.

Remark 25
Note that if a rule is n + 1-ary, then it is n + 2-ary.

Definition 26
The principles obtained by restricting R in NID to a set of n-ary
rules is denoted by NIDn.



Work in progress

Proposition 27

NID2 implies NID<ω.

Remark 28

NID0 NIDbi
oo NID1

oo NID2
oo // · · ·oo // NID<ω

oo
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