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A history of constructivism

» History

>

vV vV vV vV vV VvYY

Arithmetization of mathematics (Kronecker, 1887)
Three kinds of intuition (Poincaré, 1905)

French semi-intuitionism (Borel, 1914)

Intuitionism (Brouwer, 1914)

Predicativity (Weyl, 1918)

Finitism (Skolem, 1923; Hilbert-Bernays, 1934)
Constructive recursive mathematics (Markov, 1954)
Constructive mathematics (Bishop, 1967)

» Logic

>

Intuitionistic logic (Heyting, 1934; Kolmogorov, 1932)



Language

We use the standard language of (many-sorted) first-order
predicate logic based on

> primitive logical operators A, V, —, 1.V, 3.

We introduce the abbreviations
» A=A— L
» Ao B=(A—=B)A(B—A).



The BHK interpretation

The Brouwer-Heyting-Kolmogorov (BHK) interpretation of the
logical operators is the following.

» A proof of AA B is given by presenting a proof of A and a
proof of B.

v

A proof of AV B is given by presenting either a proof of A or
a proof of B.

v

A proof of A— B is a construction which transforms any
proof of A into a proof of B.

v

Absurdity 1 has no proof.

v

A proof of VxA(x) is a construction which transforms any t
into a proof of A(t).

v

A proof of IxA(x) is given by presenting a t and a proof of
A(t).



The BHK interpretation

» A proof of Vx3yA(x, y) is a construction which transforms
any t into a proof of JyA(t, y);

» A proof of JyA(t,y) is given by presenting an s and a proof of
A(t,s).

Therefore

» a proof of Vx3yA(x, y) is a construction which transforms any
t into s and a proof of A(t,s).

Remark 1

» A proof of =(=A A —=B) is not a proof of AV B.
> A proof of =Vx—A(x) is not a n proof of IxA(x).



Natural Deduction System

We shall use D, possibly with a subscript, for arbitrary deduction.

We write
r
D
A

to indicate that D is deduction with conclusion A and assumptions
r.



Deduction (Basis)

For each formula A,
A

is a deduction with conclusion A and assumptions {A}.



Deduction (Induction step, —1I)

If
r
D
B
is a deduction, then r
D
_ B
A— B

is a deduction with conclusion A — B and assumptions ' \ {A}.
We write

[A]
D

B —I
A— B



Deduction (Induction step, —E)

If
¥l P
D, D>
A— B A
are deductions, then
5l P
Dy Dy
A—-B A
B —E

is a deduction with conclusion B and assumptions '] U I5.



Example

[A— B] [A]

[—A] —A

_|_\B
ﬁﬁ(A — B) — (ﬁﬁA — ﬁﬁB)

—1

I



Minimal logic

[A]
D D D,
B, AsB A L
Ao B B
12\1 %2 ANB ANB
A A
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2 B D
A V
Aave I ave Vb C VE



Minimal logic

Z/)\ VDA
WAL L A T
1A
D D1 D>
A/ L A/ C

JxA C

» In VE and 31, t must be free for x in A.

> In VI, D must not contain assumptions containing x free, and
y=xory¢FV(A).

» In JE, D, must not contain assumptions containing x free
except A, x  FV(C), and y = x or y ¢ FV(A).



Example

[(A—=B)A (A= Q)] B [(A—=B)A (A= Q)] AE
A B Ara) A C "
—E —E
B C/\I
BAC 1
A—BAC
—I

(ASB)A(A>C) = (A= BACQ)



Intuitionistic logic

Intuitionistic logic is obtained from minimal logic by adding the
intuitionistic absurdity rule (ex falso quodlibet).

If

R

is a deduction, then

L

-9

is a deduction with conclusion A and assumptions I'.



Example

—-A A
AW
—_= J—l‘
_B I
[-(A— B)] A—B [B]
= . % -] AoB e
~—B - B
L
—(A>B) !

I



Example

“Al (A
AW
[AV B] B [B]

- VE

A B 1

—1

AV B — (-A— B)



Classical logic

Classical logic is obtained from intuitionistic logic by strengthening
the absurdity rule to the classical absurdity rule (reductio ad

absurdum).
If
r
D
1
is a deduction, then -
i
A te

is a deduction with conclusion A and assumption I\ {—A}.



Example (classical logic)

The double negation elimination (DNE):

[-=Al [PA]
4k
—A—- A

—E

—1



Example (classical logic)

The principle of excluded middle (PEM):

7[/4] VI
[(AV-A)] Av-A "7
n —E
— —I
—A VI,
[-(AV =A)] AV -A
—E

AV -A Le



Example (classical logic)

De Morgan's law (DML):

[A] [B]
[-F(AANB)] AAB
1
TA —I
[(~AV —B)] ~Aav-B I
n —E

§—>I

[~(=AV =B)] ~Av-B U
T —E
T
“AV B .
-(AANB)—»-AV-B

A

I



RAA vs —1

L : deriving A by deducing absurdity (L) from —A.
[-A]

NI

L

—1: deriving = A by deducing absurdity (L) from A.

[A]
D

1
ﬁA_ﬂ



A short history

» Aczel (2006) introduced the notion of a set-generated class
for dcpos using some terminology from domain theory.

» van den Berg (2013) introduced the principle NID on
non-deterministic inductive definitions and set-generated
classes in the constructive Zermelo-Frankel set theory CZF.

» Aczel et al. (2015) characterized set-generated classes using

generalized geometric theories and a set generation axiom
SGA in CZF.

» |-Kawai (2015) constructed coequalisers in the category of
basic pairs in the extension of CZF with SGA.

» |-Nemoto (2016) introduced another NID principle, called
nullary NID, and proved that nullary NID is equivalent to
Fullness in a subsystem ECST of CZF.



The elementary constructive set theory

The language of a constructive set theory contains variables for
sets and the binary predicates = and €. The axioms and rules are
those of intuitionistic predicate logic with equality. In addition,
ECST has the following set theoretic axioms:

Extensionality: VaVb[Vx(x € a<» x € b) — a = b].
Pairing: VYaVb3cVx(x € c <> x = aV x = b).
Union: VadbVx[x € b4 Jy € a(x € y)].

Restricted Separation:
VadbVx(x € b+ x € aA p(x))

for every restricted formula ¢(x). Here a formula
©(x) is restricted, or Ay, if all the quantifiers
occurring in it are bounded, i.e. of the form Vx € ¢
or Ix € c.



The elementary constructive set theory

Replacement:
Va[Vx € adlyp(x, y)—=3bVy(y € b4 Ix € ap(x,y))]

for every formula ¢(x, y).

Strong Infinity:

Ja[0 e aAVx(x €a— x+ 1€ a)
AVy(Dey AVx(x ey —x+1ey)—aly),

where x + 1 is x U {x}, and 0 is the empty set ().



The elementary constructive set theory

» Using Replacement and Union, the cartesian product a x b of
sets a and b consisting of the ordered pairs
(x,y) = {{x},{x,y}} with x € a and y € b can be
introduced in ECST.

» A relation r between a and b is a subset of a x b. A relation
r C a x b is total (or is a multivalued function) if for every
X € a there exists y € b such that (x,y) € r.

» A function from a to b is a total relation f C a x b such that
for every x € a there is exactly one y € b with (x,y) € f.



The elementary constructive set theory

The class of total relations between a and b is denoted by mv(a, b):
remv(a,b)erCaxbAVxeady e b((x,y) €r).
The class of functions from a to b is denoted by b?:

f € bP<f € mv(a, b)
AVx € aVy,z € b((x,y) e f N(x,z) € f =y = z).



The constructive set theory CZF

The constructive set theory CZF is obtained from ECST by
replacing Replacement by

Strong Collection:

Va[Vx € adyp(x,y) — 3b(Vx € ady € bp(x,y)
AVy € b3x € ap(x,y))]

for every formula ¢(x, y),



The constructive set theory CZF

and adding

Subset Collection:

Vavb3cVul[Vx € ady € by(x,y,u) —
3d € c(Vx € ady € dy(x,y, u)
AVy € d3x € ap(x, y, u))]

for every formula ¢(x, y, u), and

€-Induction:
Va(Vx € ap(x) — ¢(a)) — Yap(a),

for every formula ¢(a).



The constructive set theory CZF

» In ECST, Subset Collection implies
Fullness:

Vav¥b3c(c C mv(a, b)
AYr e mv(a, b)ds € c(s C r)),

and Fullness and Strong Collection imply Subset Collection.
» The notable consequence of Fullness is that b2 forms a set:
Exponentiation: VaVb3cVf(f € c <> f € b?).

» For a set S, we write Pow(S) for the power class of S which
is not a set in ECST nor in CZF:

acPow(S)<acCs.



Set-generated classes

Definition 2

Let S be a set, and let X be a subclass of Pow(S). Then X is
set-generated if there exists a subset G, called a generating set, of
X such that

Vae XVx e adf e G(x € f C o).

Remark 3

The power class Pow(S) of a set S is set-generated with a
generating set

{{x} | x € S}.



Rules

Definition 4
Let S be a set. Then a rule on S is a pair (a, b) of subsets a and b
of S. A rule is called

> nullary if a is empty;
» elementary if a is a singleton;
» finitary if a is finitely enumerable.

A subset « of S is closed under a rule (a, b) if
aCa—b(a.

For a set R of rules on S, we call a subset o of S R-closed if it is
closed under each rule in R.

Remark 5
Note that if a rule is nullary or elementary, then it is finitary.



NID principles

Definition 6
Let NID denote the principles that
» for each set S and set R of rules on S, the class of R-closed
subsets of S is set-generated.

The principles obtained by restricting R in NID to a set of nullary,
elementary and finitary rules are denoted by NIDg, NID; and
NID.,, respectively.

Remark 7
Note that NID_,, implies NIDg and NID;.



The nullary NID

Theorem 8 (I-Nemoto 2015)
The following are equivalent over ECST.
1. NIDg.

2. Fullness.

Proposition 9 (I-Nemoto 2015)
NID; implies NIDg.

Remark 10

NIDg <—— NID; =<—— NID,,



Basic pairs

Definition 11
A basic pair is a triple (X,IF, S) of sets X and S, and a relation I-
between X and S.



Relation pairs

Definition 12

A relation pair between basic pairs X3 = (Xi,lF1,51) and

Xo = (Xa,1k2,S2) is a pair (r,s) of relations r C Xy x X3 and
s C 51 X S5 such that

lFoor=solkq,

that is, the following diagram commute.



Relation pairs

Definition 13
Two relation pairs (r1,s1) and (r2, s2) between basic pairs X7 and

X> are equivalent, denoted by (ry,s1) ~ (2, 52), if

”—2 on = H—z o r,

or equivalently s; olF; = sp oIk,



The category of basic pairs

Notation 14
For a basic pair (X, I, S), we write

OD =1IF (D) and extU=I-"1(U)
for D € Pow(X) and U € Pow(S).

Proposition 15
Basic pairs and relation pairs form a category BP.



Coequalisers

Definition 16

f
A coequaliser of a parallel pair A= B in a category C is a pair of
g

an object C and a morphism B = C such that eof = eog, and it
satisfies a universal property in the sense that for any morphism

B D with hof=ho g, there exists a unique morphism C ~AD
for which the following diagram commutes.

AH4>8$C

\k
h ™\ v

D



Coequalisers

Proposition 17 (I-Kawai 2015)
(r1,s1)

Let X 1:;1 Xy be a parallel pair of relation pairs in BP. If a
(r2,52)

subclass

Q = {U € Pow(S2) | exty sfl(U) = exty Sgl(U)}

of Pow(Sy) is set-generated, then the parallel pair has a
coequaliser.



A NID principle

Definition 18
Let S be a set. Then a subset a of S is biclosed under a rule (a, b)
if

aja+b(a.
For a set R of rules on S, we call a subset o of S R-biclosed if it is
biclosed under each rule in R.

Definition 19
Let NIDy,; denotes the principles that

» for each set S and set R of rules on S, the class of R-biclosed
subsets of S is set-generated.



A NID principle

Proposition 20

» NID; implies NIDy;.
» NIDy,; implies NIDy.

Remark 21

NTDq NIDy;

NID; < NID.,,



BP has coequalisers

Theorem 22
The following are equivalent over ECST.

1. NIDy;.

2. BP has coequalisers.

Remark 23
Since BP has small coproducts, in the presence of NIDy;, the
category BP is cocomplete.



Work in progress

Definition 24
A rule (a, b) on a set S is called n-ary if there exists a surjection
n— a.

Remark 25
Note that if a rule is n + 1-ary, then it is n + 2-ary.

Definition 26
The principles obtained by restricting R in NID to a set of n-ary
rules is denoted by NID,.



Work in progress

Proposition 27
NID»> implies NID .

Remark 28

NIDg NIDy; NID; =<—— NIDp <— - -~

<~ NID_,,
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