MacNeille completion and Buchholz' Omega rule

Kazushige Terui

RIMS, Kyoto University

27/03/18, Tegata

Introduction:

犬の口にはゴムパッキンがついている (佐々木倫子『動物のお医者さん』より)

A similarity

Buchholz' Ω -rule (1981)

$$\frac{\{\Delta \Rightarrow \Pi^*\}_{\Delta \Rightarrow_Y^{\mathbf{LI}} \varphi^*(Y)}}{\forall X.\varphi(X) \Rightarrow \Pi}$$

where Δ is 1st order and $\forall X.\varphi(X)$, Π is 2nd order,

is similar to

a characteristic property of MacNeille completion $A \subseteq \overline{A}$: $\{a \leq y\}_a \leq x$

$$\frac{x - y}{x \le y}$$

where $a \in A$ and $x, y \in \overline{A}$.

Syntactic cut elimination

- 1. Ordinal assignment
- Ω-rule technique (Buchholz, Aehlig, Mints, Akiyoshi, ...). Works only for fragments of higher order

logics/arithmetic.

Semantic cut elimination

- Semi-valuation (Schütte, Takahashi, Prawitz).
 3-valued semantics (Girard 76).
 Employs RAA and WKL.
 Destroys the proof structure.
- 2. MacNeille completion and reducibility candidates (Maehara 91, Okada 96, after Girard 71). Fully constructive. Extends to strong normalization.

Target system	Fragments	Full higher-order logics
Algebraic proof	???	MacNeille completion
		+ reducibility candidates
Syntactic proof	Ω -rule	Takeuti's Conjecture

In this talk we fill in the ??? slot by introducing the concept of Ω -valuation. The target systems are parameter-free 2nd order intuitionistic logics.

Target system	Fragments	Full higher-order logics
Algebraic proof	???	MacNeille completion
		+ reducibility candidates
Syntactic proof	Ω -rule	Takeuti's Conjecture

In this talk we fill in the ??? slot by introducing the concept of Ω -valuation. The target systems are parameter-free 2nd order intuitionistic logics.

Notice: It is mostly a reworking of known results (especially those of Klaus Aehlig). Our purpose is just to provide an algebraic perspective on them.

Outline

- MacNeille completion
- Parameter-free 2nd order intuitionistic logics
- Ω -rule technique (syntactic)
- Ω -valuation technique (semantic)
- For the lambda calculus audience
- For the nonclassical logics audience

MacNeille completion

石器時代より前のおはなし

A: a lattice.

A completion of A is an embedding $e : A \longrightarrow B$ into a complete lattice B (we often assume $A \subseteq B$). Examples:

- $\mathbb{Q} \subseteq \mathbb{R} \cup \{\pm \infty\}$
- $e: \mathbf{A} \longrightarrow \wp(\mathsf{uf}(\mathbf{A}))$ (A: Boolean algebra)

 $A \subseteq B$ is a MacNeille completion if for any $x \in B$,

$$x = \bigwedge \{a \in \mathbf{A} : x \le a\} = \bigvee \{a \in \mathbf{A} : a \le x\}.$$

Theorem (Banachewski 56, Schmidt 56)

Every lattice A has a unique MacNeille completion \overline{A} . MacNeille completion is regular, i.e., preserves \land and \lor that already exist in A. • $\mathbb{Q} \subseteq \mathbb{R} \cup \{\pm \infty\}$ is MacNeille, since

 $x = \inf\{a \in \mathbb{Q} : x \le a\} = \sup\{a \in \mathbb{Q} : a \le x\}$

for any $x \in \mathbb{R}$. It is regular, e.g.,

$$0 = \lim_{n \to \infty} \frac{1}{n} (\text{in } \mathbb{Q}) = \lim_{n \to \infty} \frac{1}{n} (\text{in } \mathbb{R}).$$

- $e: \mathbf{A} \longrightarrow \wp(uf(\mathbf{A}))$ is not regular, hence not MacNeille (actually a canonical extension).
- $f: \mathbf{B} \longrightarrow \mathsf{UpSet}(\mathsf{PPF}(\mathbf{B}))$ is not regular (**B**: Heyting algebra)

 \mathcal{DL} : the class of distributive lattices. \mathcal{HA} : the class of Heyting algebras. \mathcal{BA} : the class of Boolean algebras.

Theorem

- \mathcal{DL} is not closed under MacNeille (Funayama 44).
- \mathcal{HA} and \mathcal{BA} are closed under MacNeille completions.
- These are the only nontrivial subvarieties of \mathcal{HA} closed under MacNeille (Harding-Bezhanishvili 04).

Conservative extension by MacNeille completion does not work for proper intermediate logics.

Fact

A completion $A \subseteq B$ is MacNeille iff the inferences below are valid:

$$\frac{\{a \le y\}_{a \le x}}{x \le y} \qquad \frac{\{x \le a\}_{y \le a}}{x \le y}$$

where x, y range over **B** and a over **A**.

"If $a \leq x$ implies $a \leq y$ for any $a \in \mathbf{A}$, then $x \leq y$."

This looks similar to the Ω -rule.

Parameter-free 2nd order intuitionistic logic

近年、若者の×××離れが著しい

 $G^{1}LI$: sequent calculus for 2nd order intuitionistic logic with full comprehension

$$\frac{\varphi(\lambda x.\psi), \Gamma \Rightarrow \Pi}{\forall X.\varphi(X), \Gamma \Rightarrow \Pi} \qquad \frac{\Gamma \Rightarrow_Y \varphi(Y)}{\Gamma \vdash \forall X.\varphi(X)}$$

where

- $\Gamma \Rightarrow_Y \varphi(Y)$ means $Y \notin FV(\Gamma)$ (eigenvariable).
- $\varphi(\lambda x.\psi)$ obtained by replacing $t \in X \mapsto \psi(t)$.

Theorem (cf. Takeuti 53) For any Σ_1^0 sentence φ ,

$$\mathbf{Z}_2 \vdash \varphi \quad \Longrightarrow \quad \mathbf{G}^1 \mathbf{L} \mathbf{I} \vdash \xi \to \varphi$$

for some true Π_1^0 sentence ξ . Cut elimination for $\mathbf{G}^1\mathbf{L}\mathbf{I}$ implies 1-consistency of \mathbf{Z}_2 , i.e., provable Σ_1^0 -sentences are true.

Proof: By relativization $\varphi \mapsto \varphi^{\mathbf{N}}$.

$$\begin{split} \mathbf{N}(t) &:= & \forall X. [\forall x (x \in X \to x + 1 \in X) \land 0 \in X \to t \in X] \\ (\forall x. \varphi)^{\mathbf{N}} &:= & \forall x. \mathbf{N}(x) \to \varphi^{\mathbf{N}} \\ (\exists x. \varphi)^{\mathbf{N}} &:= & \exists x. \mathbf{N}(x) \land \varphi^{\mathbf{N}} \end{split}$$

線形論理の「基礎論離れ」の系譜

- 1953年:竹内、高階算術の無矛盾性を高階述語論理の カット除去に還元
- 1965 年: Prawitz、一般証明論の提唱
- 1971年: Girard、高階命題論理の強正規化定理
- 1986年: Girard、線形論理と証明ネットの提唱

証明ネットの理論が完全にうまくいくのは乗法的部分 のみ:

 $\alpha \qquad \alpha^{\perp} \qquad A \otimes B \qquad A \wp B$

乗法的部分に制限するなら論理式なんていらない。大事な のは証明ネットのグラフ構造のみ。

Tm: the set of 1st order terms X, Y, Z, \ldots : 2nd order variables Fm : the formulas of 1st-order intuitionistic logic

$$\varphi, \psi ::= p(\overline{t}) \mid t \in X \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \forall x.\varphi \mid \exists x.\varphi$$

FM₀:

$$\varphi ::= p(\overline{t}) \mid t \in X \mid \cdots \mid \forall X.\psi \mid \exists X.\psi$$

where $\psi \in Fm$ doesn't contain 2nd order variables except X.

 $\mathsf{FM}_1, \mathsf{FM}_2, \mathsf{FM}_3, \ldots$

If φ arithmetical, $\varphi^{\mathbf{N}} \in \mathsf{FM}_0$.

LI: sequent calculus for the 1st order intuitionistic logic. $G^{1}LI_{0}$: sequent calculus $G^{1}LI$ restricted to FM₀. $G^{1}LI_{1}, G^{1}LI_{2}, G^{1}LI_{3}, ...$

Theorem

If $\mathbf{PA} \vdash \varphi$ ($\in \Sigma_1^0$), then $\mathbf{G}^1 \mathbf{LI}_0 \vdash \xi \rightarrow \varphi$. Cut elimination for $\mathbf{G}^1 \mathbf{LI}_0$ implies 1-consistency of \mathbf{PA} . Cut elimination for $\mathbf{G}^1 \mathbf{LI}_n$ implies 1-consistency of \mathbf{ID}_n . **LI**: sequent calculus for the 1st order intuitionistic logic. $G^{1}LI_{0}$: sequent calculus $G^{1}LI$ restricted to FM₀. $G^{1}LI_{1}, G^{1}LI_{2}, G^{1}LI_{3}, ...$

Theorem

If $\mathbf{PA} \vdash \varphi$ ($\in \Sigma_1^0$), then $\mathbf{G}^1 \mathbf{LI}_0 \vdash \xi \rightarrow \varphi$. Cut elimination for $\mathbf{G}^1 \mathbf{LI}_0$ implies 1-consistency of \mathbf{PA} . Cut elimination for $\mathbf{G}^1 \mathbf{LI}_n$ implies 1-consistency of \mathbf{ID}_n .

We are now interested in proving cut elimination for $G^{1}LI_{0}$ globally in ID_{1} and locally in PA so that

 $1CON(PA) \leftrightarrow CE(G^1LI_0)$

is proved in a suitably weak metatheory (eg., PRA).

Ω -rule

私はアルファでありオメガである

Cut elimination for 2nd order logics is tricky, since the reduction step

$$\frac{\Gamma \Rightarrow_{Y} \varphi(Y)}{\Gamma \vdash \forall X.\varphi(X)} \quad \frac{\varphi(\lambda x.\psi) \Rightarrow \Pi}{\forall X.\varphi(X) \Rightarrow \Pi} (CUT)$$
$$\Gamma \Rightarrow \Pi$$
$$\Downarrow$$

$$\frac{\Gamma \Rightarrow \varphi(\lambda x.\psi) \quad \varphi(\lambda x.\psi) \Rightarrow \Pi}{\Gamma \Rightarrow \Pi} (CUT)$$

may yield a **BIGGER** cut formula. Ω -rule (Buchholz 81, Buchholz-Schütte 88, Buchholz 01, Aehlig 04, Akiyoshi-Mints 16, ...) is a way to resolve this difficulty.

The (simplified) Ω -rule for $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$:

$$\frac{\{\Delta \Rightarrow \Pi^*\}_{\Delta \Rightarrow_Y^{\mathbf{LI}} \varphi^*(Y)}}{\forall X. \varphi(X) \Rightarrow \Pi}$$

where * is any substitution for 1st order free variables and $\Delta \Rightarrow^{\mathbf{LI}}_{Y} \varphi^{*}(Y)$ means

- $Y \not\in \mathsf{FV}(\Delta)$,
- $\Delta \subseteq Fm$ (1st order formulas),
- $\mathbf{LI} \vdash \Delta \Rightarrow \varphi^*(Y).$

"If $\Delta \Rightarrow_Y^{\mathbf{LI}} \varphi^*(Y)$ implies $\Delta \Rightarrow \Pi^*$ for any * and $\Delta \subseteq \mathsf{Fm}$, then $\forall X.\varphi(X) \Rightarrow \Pi$."

Embedding: We have:

$$\frac{\{ \Delta \Rightarrow \varphi^*(\lambda x.\psi) \}_{\Delta \Rightarrow_Y^{\mathbf{LI}} \varphi^*(Y)}}{\forall X.\varphi(X) \Rightarrow \varphi(\lambda x.\psi)}$$

Hence $\forall X$ -left can be simulated by Ω .

Collapsing: Consider

$$\frac{\Gamma \Rightarrow_{Y} \varphi(Y)}{\Gamma \Rightarrow \forall X.\varphi(X)} \quad \frac{\{\Delta \Rightarrow \Pi^{*}\}_{\Delta \Rightarrow_{Y}^{\mathbf{LI}} \varphi^{*}(Y)}}{\forall X.\varphi(X) \Rightarrow \Pi} (CUT)$$
$$\Gamma \Rightarrow \Pi$$

If $\Gamma \Rightarrow_Y^{\mathbf{LI}} \varphi(Y)$ holds, then $\Gamma \Rightarrow \Pi$ is one of the premises (with * = id). Hence the (CUT) can be eliminated.

Syntactic cut elimination for $G^{1}LI_{0}$:

- 1. Introduce a new proof system based on the Ω -rule by inductive definition.
- 2. Show that G^1LI_0 embeds into the new proof system.
- 3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents. (Can be extended to all derivations (Akiyoshi-Mints 16))

Theorem

 ID_1 proves that G^1LI_0 is a conservative extension of LI.

Syntactic cut elimination for $G^{1}LI_{0}$:

- 1. Introduce a new proof system based on the Ω -rule by inductive definition.
- 2. Show that G^1LI_0 embeds into the new proof system.
- 3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents. (Can be extended to all derivations (Akiyoshi-Mints 16))

Theorem

 ID_1 proves that G^1LI_0 is a conservative extension of LI.

So the Ω -rule works, but is it logically sound?

 Ω -valuation

スライムをゆうしゃのつるぎで倒すのは 大人げないと思う。

Let us first give an algebraic proof to Fact G¹LI₀ is a conservative extension of LI.

Fact

 $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$ is a conservative extension of $\mathbf{L}\mathbf{I}$.

(Proof)

Let $\mathbf{L} := Fm/\sim$ be the Lindenbaum algebra for LI. Let $\overline{\mathbf{L}}$ be the MacNeille completion of L.

Fact

 $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$ is a conservative extension of $\mathbf{L}\mathbf{I}$.

(Proof)

Let $\underline{\mathbf{L}} := Fm/\sim$ be the Lindenbaum algebra for LI.

Let $\overline{\mathbf{L}}$ be the MacNeille completion of L.

The canonical valuation $f : Fm \longrightarrow L$

$$f(\varphi) := [\varphi]$$

can be extended to $\overline{f} : FM_0 \longrightarrow \overline{L}$ since \overline{L} is complete.

Fact

 $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$ is a conservative extension of $\mathbf{L}\mathbf{I}$.

(Proof)

Let $\mathbf{L}:=Fm/\!\sim$ be the Lindenbaum algebra for LI.

Let $\overline{\mathbf{L}}$ be the MacNeille completion of L.

The canonical valuation $f : Fm \longrightarrow L$

$$f(\varphi) := [\varphi]$$

can be extended to $\overline{f} : FM_0 \longrightarrow \overline{\mathbf{L}}$ since $\overline{\mathbf{L}}$ is complete. If $\mathbf{G}^1 \mathbf{L} \mathbf{I}_0 \vdash \varphi$ with $\varphi \in Fm$, then $\overline{f}(\varphi) = \top$ by Soundness.

Fact

 $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$ is a conservative extension of $\mathbf{L}\mathbf{I}$.

(Proof)

Let $\mathbf{L}:=\mathsf{Fm}/\!\!\sim\mathsf{be}$ the Lindenbaum algebra for LI.

Let $\overline{\mathbf{L}}$ be the MacNeille completion of \mathbf{L} .

The canonical valuation $f: \operatorname{Fm} \longrightarrow \mathbf{L}$

$$f(\varphi) := [\varphi]$$

can be extended to $\overline{f} : FM_0 \longrightarrow \overline{L}$ since \overline{L} is complete. If $G^1LI_0 \vdash \varphi$ with $\varphi \in Fm$, then $\overline{f}(\varphi) = \top$ by Soundness. Since $\overline{f} = f$ for Fm, we have $f(\varphi) = [\varphi] = \top$. That is, $LI \vdash \varphi$. **Difficulty:** the definition of \overline{f} involves

$$\overline{f}(\forall X.\varphi) = \bigwedge_{\xi:\mathsf{Tm}\to\overline{\mathbf{L}}} \overline{f}_{[X\mapsto\xi]}(\varphi)$$

that cannot be formalized in PA.

Difficulty: the definition of \overline{f} involves

$$\overline{f}(\forall X.\varphi) = \bigwedge_{\xi: \mathsf{Tm} \to \overline{\mathbf{L}}} \overline{f}_{[X \mapsto \xi]}(\varphi)$$

that cannot be formalized in PA. Key observation

The Ω -rule is sound w.r.t. $\overline{f} : FM_0 \longrightarrow \overline{L}$, though unsound in general.

The reason is that Ω -rule is "similar" to MacNeille.

$$\frac{\{\Delta \Rightarrow \Pi^*\}_{\Delta \Rightarrow_Y^{\mathbf{LI}} \varphi^*(Y)}}{\forall X.\varphi(X) \Rightarrow \Pi} \qquad \frac{\{a \le y\}_a \le x}{x \le y}$$

Motivated by this, we introduce the Ω -valuation $f^{\Omega} : \mathsf{FM}_0 \longrightarrow \overline{\mathbf{L}}$.

$$\begin{aligned} f^{\Omega}(p(\bar{t})) &= [p(\bar{t})] \\ f^{\Omega}(t \in X) &= [t \in X] \\ f^{\Omega}(\varphi \to \psi) &= f^{\Omega}(\varphi) \to f^{\Omega}(\psi) \\ f^{\Omega}(\forall x.\varphi(x)) &= \bigwedge_{t \in \mathsf{Tm}} f^{\Omega}(\varphi(t)) \\ f^{\Omega}(\forall X.\varphi(X)) &= \bigvee \{ [\Delta] \in \mathbf{L} : \Delta \Rightarrow_{Y}^{\mathbf{LI}} \varphi(Y) \text{ for some } Y \} \end{aligned}$$

Lemma

 $G^{1}LI_{0}$ is sound w.r.t. the Ω -valuation.

Motivated by this, we introduce the Ω -valuation $f^{\Omega} : \mathsf{FM}_0 \longrightarrow \overline{\mathbf{L}}$.

$$\begin{aligned} f^{\Omega}(p(\overline{t})) &= [p(\overline{t})] \\ f^{\Omega}(t \in X) &= [t \in X] \\ f^{\Omega}(\varphi \to \psi) &= f^{\Omega}(\varphi) \to f^{\Omega}(\psi) \\ f^{\Omega}(\forall x.\varphi(x)) &= \bigwedge_{t \in \mathsf{Tm}} f^{\Omega}(\varphi(t)) \\ f^{\Omega}(\forall X.\varphi(X)) &= \bigvee \{ [\Delta] \in \mathbf{L} : \Delta \Rightarrow_Y^{\mathbf{LI}} \varphi(Y) \text{ for some } Y \} \end{aligned}$$

Lemma $G^{1}LI_{0}$ is sound w.r.t. the Ω -valuation.

Remark: (Altenkirch-Coquand 01) made a similar observation in the context of λ -calculus, but ...

The argument locally formalizes in PA. Hence:

Theorem (in PRA)

PA is 1-consistent iff $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0}$ is a conservative extension of LI.

 ID_n is 1-consistent iff G^1LI_n is a conservative extension of LI.

Polarity: a uniform framework for MacNeille completion and cut elimination

A polarity is $W = \langle W, W', R \rangle$ where W, W' are sets and $R \subseteq W \times W'$ (Birkhoff 40). Given $X \subseteq W$ and $Z \subseteq W'$,

$$X^{\triangleright} := \{ z \in W' : \text{ for all } x \in X, x R z \}$$

$$Z^{\triangleleft} := \{ x \in W : \text{ for all } z \in Z, x R z \}$$

The pair $(\triangleright, \triangleleft)$ forms a Galois connection:

$$X \subseteq Z^{\triangleleft} \quad \Longleftrightarrow \quad X^{\rhd} \supseteq Z$$

so induces a closure operator on $\wp(W)$:

Lemma

 $\mathbf{W}^+ := \langle G(\mathbf{W}), \cap, \cup_{\gamma} \rangle$ is a complete lattice. It is a complete Heyting algebra under additional assumptions.

Given a lattice (or Heyting algebra) A,

$$\mathbf{W}_{\mathbf{A}} := \langle A, A, \leq \rangle$$

is a polarity. X^{\triangleright} is the upper bounds of X and Z^{\triangleleft} is the lower bounds of Z. Let $\gamma(a) := \{a\}^{\triangleright \triangleleft}$.

Theorem

 $\gamma: \mathbf{A} \longrightarrow \mathbf{W}_{\mathbf{A}}^+$ is the MacNeille completion of \mathbf{A} .

For example, consider

$$\mathbf{W}_{\mathbb{Q}} := \langle \mathbb{Q}, \mathbb{Q}, \leq
angle$$

Then for each $X \in G(\mathbf{W})$, (X, X^{\triangleright}) is a Dedekind cut. Hence

$$\mathbf{W}^+_{\mathbb{Q}} \cong \mathbb{R} \cup \{\pm \infty\}.$$

We now give an algebraic proof to Theorem G^1LI_0 admits cut elimination.

Define a polarity by

 $\begin{array}{lll} \mathbf{W}_{cf} & := & \langle Seq, Cxt, \Rightarrow^{cf} \rangle \\ Seq & := & \mathsf{FM}_0^* \\ Cxt & := & \mathsf{FM}_0^* \times (\mathsf{FM}_0 \cup \{\emptyset\}) \\ \Gamma \Rightarrow^{cf} (\Sigma, \Pi) & \Leftrightarrow & \Gamma, \Sigma \Rightarrow \Pi \text{ is cut-free provable in } \mathbf{G}^1 \mathbf{LI}_0. \end{array}$

Fact \mathbf{W}_{cf}^+ is a complete Heyting algebra such that $\Gamma \in \varphi^{\triangleleft} \iff \Gamma \Rightarrow^{cf} \varphi.$

Ω -valuation again

One could use the "reducibility candidates" technique as in (Maehara 91) and (Okada 96), but it is too strong for $G^{1}LI_{0}$. It doesn't (locally) formalize in PA.

 Ω -valuation $f : \mathsf{FM}_0 \longrightarrow \mathbf{W}_{cf}^+$

 $\begin{aligned}
f^{\Omega}(p(\bar{t})) &= p(\bar{t})^{\triangleleft} \\
f^{\Omega}(t \in X) &= (t \in X)^{\triangleleft} \\
f^{\Omega}(\varphi \to \psi) &= f^{\Omega}(\varphi) \to f^{\Omega}(\psi) \\
f^{\Omega}(\forall x.\varphi(x)) &= \bigcap_{t \in \mathsf{Tm}} f^{\Omega}(\varphi(t)) \\
f^{\Omega}(\forall X.\varphi(X)) &= \forall X.\varphi(X)^{\triangleleft} \\
&= \{\Delta \in Seq : \Delta \Rightarrow_{Y}^{cf} \varphi(Y) \text{ for some } Y\}^{\rhd \triangleleft}
\end{aligned}$

Lemma

 $\mathbf{G}^{1}\mathbf{L}\mathbf{I}_{0} \vdash \Gamma \Rightarrow \Pi \text{ implies } f^{\Omega}(\Gamma) \subseteq f^{\Omega}(\Pi) \text{ (Soundness).}$ $\varphi \in f^{\Omega}(\varphi) \subseteq \varphi^{\triangleleft} \text{ for any } \varphi \in \mathsf{FM}_{0} \text{ (Completeness).}$

Now cut elimination for $\mathbf{G}^{1}\mathbf{LI}_{0}$ follows easily.

(Proof) Suppose $\mathbf{G}^{1}\mathbf{LI}_{0} \vdash \varphi \Rightarrow \psi$. Then $f^{\Omega}(\varphi) \subseteq f^{\Omega}(\psi)$ by Soundness. $\varphi \in f^{\Omega}(\varphi) \subseteq f^{\Omega}(\psi) \subseteq \psi^{\triangleleft}$ by Completeness. So $\varphi \Rightarrow \psi$ is cut-free provable. We have shown provability = cut-free provability. So a fortiori we obtain: Theorem

 \mathbf{W}_{cf}^+ is the MacNeille completion of the Lindenbaum algebra for $\mathbf{G}^1\mathbf{LI}_0$.

algebraic c.elim = MacNeille compl. + Ω -valuation

We have shown provability = cut-free provability. So a fortiori we obtain: Theorem

 \mathbf{W}_{cf}^+ is the MacNeille completion of the Lindenbaum algebra for $\mathbf{G}^1\mathbf{LI}_0$.

algebraic c.elim = MacNeille compl. + Ω -valuation

Theorem (in PRA) $1CON(PA) \leftrightarrow CE(G^1LI_0)$ $1CON(ID_n) \leftrightarrow CE(G^1LI_n)$

For the lambda calculus audience

We have been careful in which metatheory the theorem is proved.

Does it matter if one is only interested in the TRUTH?

Yes! Since a proper metatheory consideration often leads to an interesting TRUTH such as

iterated System T = parameter-free System F.

Type₀ is defined by:

$$A,B ::= X \mid A \Rightarrow B \mid \forall X.C,$$

where *C* is a simple type s.t. $Fv(C) \subseteq \{X\}$.

 $\mathbf{F}_0^p :=$ System \mathbf{F} with types restricted to Type₀.

Eg.
$$\mathbf{N} := \forall X. (X \Rightarrow X) \Rightarrow (X \Rightarrow X) \in \mathsf{Type}_0.$$

Clearly $\operatorname{Rep}(\mathbf{T}) \subseteq \operatorname{Rep}(\mathbf{F}_0^p)$.

How do you prove the converse?

```
Theorem (Akiyoshi-T. 16)

ID_1 \vdash SN(F_0^p).

PA \vdash \Phi-SN(F_0^p) for any finite \Phi \subseteq Type_0.
```

The 2nd statement implies: for every closed term $M: \mathbf{N} \Rightarrow \mathbf{N}$ of \mathbf{F}_0^p ,

$$\mathbf{PA} \vdash \forall x \exists y. "M\underline{x} =_{\beta} \underline{y}'',$$

hence $\operatorname{Rep}(\mathbf{F}_0^p) \subseteq \operatorname{Total}(\mathbf{PA}) = \operatorname{Rep}(\mathbf{T})$. Theorem (Altenkirch-Coquand 01) $\operatorname{Rep}(\mathbf{F}_0^p) = \operatorname{Rep}(\mathbf{T})$.

iterated System T = parameter-free System F.

For the nonclassical logics audience

Recall: Theorem (Harding-Bezhanishvili 04) \mathcal{HA} and \mathcal{BA} are the only nontrivial subvarieties of \mathcal{HA} closed under MacNeille completions.

On the other hand, one finds abundant of examples in substructural logics and associated residuated lattices.

Theorem (Ciabattoni-Galatos-T. 12)

- There are infinitely many varieties of residuated lattices closed under MacNeille completions.
- So there are infinitely many substructural logics that admit algebraic cut elimination.

For intermediate logics, a useful framework is hypersequent calculus. Associated completion is hyper-MacNeille completion.

Theorem (Ciabattoni-Galatos-T. 08, 17)

- There are infinitely many subvarieties of \mathcal{HA} closed under hyper-MacNeille completions.
- So there are infinitely many intermediate logics that admit algebraic cut elimination in hypersequent calculi.

On the other hand, there are also counterexamples for cut elimination/completion in substructural logics. That is WHY substructural logics are interesting!

Theorem

- There is an MV algebra (Chang's chain) which cannot be embedded into a complete MV algebra.
- That is, \mathcal{MV} is not closed under any completion
- Hence Łukasiewicz infinite-valued logic cannot be conservatively extended with infinitary ∧.
- That is, Ł has NO "good" proof system (although some exist ...).

Conclusion

- Ω-rule is valid for the MacNeille completion of the Lindenbaum algebra.
- This leads to algebraic cut elimination for $G^{1}LI_{0}$ based on MacNeille completion + Ω -valuation.

Target	Fragments	Full higher-order logics
Algebraic	MacNeille	MacNeille
	+ Ω -valuation	+ reducibility candidates
Syntactic	Ω -rule	Takeuti's Conjecture

1-consistency of ID_n = cut-elimination for G^1LI_n iterated System T = parameter-free System F.

Final Word

人生面白いほうに三千点。さらに倍。 (羽海野チカ『ハチミツとクローバー』 より)