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A similarity

Buchholz’ (2-rule (1981)
VX.0o(X) =11
where A is 1st order and V.X.o(X), II is 2nd order,

IS similar to

a characteristic property of MacNeille completion
A CA:
{a < y}a <ux
r <y

where a € A and =,y € A.



Cut elimination proofs for higher order logics/arithmetic

Syntactic cut elimination

1. Ordinal assignment

2. (-rule technique (Buchholz, Aehlig, Mints, Akiyoshi,
... ). Works only for fragments of higher order
logics/arithmetic.

Semantic cut elimination

1.  Semi-valuation (Schitte, Takahashi, Prawitz).
3-valued semantics (Girard 76).
Employs RAA and WKL.
Destroys the proof structure.

2. MacNeille completion and reducibility candidates
(Maehara 91, Okada 96, after Girard 71). Fully
constructive. Extends to strong normalization.



Cut elimination proofs for higher order logics/arithmetic

Target system | Fragments | Full higher-order logics
Algebraic proof | ??7 MacNeille completion

+ reducibility candidates
Syntactic proof | Q-rule Takeuti’'s Conjecture

In this talk we fill in the ??? slot by introducing the
concept of (2-valuation. The target systems are
parameter-free 2nd order intuitionistic logics.



Cut elimination proofs for higher order logics/arithmetic

Target system | Fragments | Full higher-order logics
Algebraic proof | ??7 MacNeille completion

+ reducibility candidates
Syntactic proof | Q-rule Takeuti’'s Conjecture

In this talk we fill in the ??? slot by introducing the
concept of (2-valuation. The target systems are
parameter-free 2nd order intuitionistic logics.

Notice: It is mostly a reworking of known results
(especially those of Klaus Aehlig). Our purpose is just to
provide an algebraic perspective on them.



MacNelille completion

Parameter-free 2nd order intuitionistic logics
(2-rule technique (syntactic)

(2-valuation technique (semantic)

For the lambda calculus audience

For the nonclassical logics audience




MacNeille completion
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MacNeille completion

A: a lattice.
A completion of A is an embeddinge: A — B into a

complete lattice B (we often assume A C B).
Examples:

e QCRU{+o0}
e c¢: A — p(uf(A)) (A: Boolean algebra)

A C B is a MacNelille completion if for any x € B,

r = /\{aEA:xSa} = \/{aEA:agaﬁ}.

Theorem (Banachewski 56, Schmidt 56)

Every lattice A has a unique MacNeille completion A.
MacNeille completion is regular, i.e., preserves A and \/
that already exist in A.

o



MacNeille completion

Q C RU{xo0} is MacNeille, since
r=inf{la € Q:x <a}=supla € Q:a < x}

forany x € R. It is regular, e.g.,

0= lim = (in Q) = lim = (in R).

n—oo N, n—oo N,

e: A — p(uf(A)) is not regular, hence not
MacNellle (actually a canonical extension).

f: B — UpSet(PPF(B)) is not regular (B: Heyting
algebra)



MacNeille completion: its limitation

DL: the class of distributive lattices.
HA: the class of Heyting algebras.
BA: the class of Boolean algebras.

Theorem
e DL is not closed under MacNeille (Funayama 44).

e HAand BA are closed under MacNeille completions.

e These are the only nontrivial subvarieties of HA
closed under MacNeille (Harding-Bezhanishvili 04).

v

Conservative extension by MacNeille completion does
not work for proper intermediate logics.



MacNeille completion: link to Q2-rule

Fact
A completion A C B is MacNeille iff the inferences below

are valid:

{agy}aéx {xﬁa}yga
r <y r <y

where x, y range over B and a over A.

“If a < ximpliesa <yforanya € A,thenxz <y.”

This looks similar to the Q-rule.



Parameter-free 2nd order intuitionistic
logic
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Starter: full 2nd order logic

G!'LI: sequent calculus for 2nd order intuitionistic logic
with full comprehension

p(Az.9),I' =11 [ =y oY)
VX.o(X), =1 TFVX.0(X)

where

e I'=y o(Y)meansY ¢ FV(I') (eigenvariable).
e (Ax.1p) obtained by replacing t € X — (t).



Takeuti’s logicism

Theorem (cf. Takeuti 53)
For any X9 sentence o,

ZoFo = GILIF¢( =

for some true IIY sentence &.
Cut elimination for G'LI implies 1-consistency of Z,, i.e.,
provable X{-sentences are true.

Proof: By relativization ¢ — ©N.

o

N({t) = VXNVr(zeX sz4+1eX)A0eX —te X]
Vz.o)N = Vz.N(z) = oY
(Fz.o)N = Fz.N(z) A N
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Parameter-free fragments of 2nd order intuitionistic logic

Tm: the set of 1st order terms
X,Y. Z, ....2nd order variables
Fm : the formulas of 1st-order intuitionistic logic

p, 0 =p) | te X | LAY | VY | =9 | Va.po| Tz

FM():
p:=pt)|teX | - |VX|IXY

where ¢ € Fm doesn’t contain 2nd order variables
except X.

FM,, FMy, FMs, . . .

If © arithmetical, o~ € FMy,.



Parameter-free logics and inductive definitions

LI: sequent calculus for the 1st order intuitionistic logic.
G!'LI,: sequent calculus G'LI restricted to FM.

G'LI,. G'LL, G'LI;. . ..

Theorem

If PA F o (€ 20), then GILI, - £ — o.

Cut elimination for G'LI, imp
Cut elimination for G'LI,, imp

les 1-consistency of PA.
les 1-consistency of ID,,.




Parameter-free logics and inductive definitions

LI: sequent calculus for the 1st order intuitionistic logic.

G!'LI,: sequent calculus G'LI restricted to FM.

G'LI,, G'LI,, G'LI, . ..

Theorem

If PA F o (€ 20), then GILI, - £ — o.

Cut elimination for G'LI, imp
Cut elimination for G'LI,, imp

les 1-consistency of PA.
les 1-consistency of ID,,.

We are now interested in proving cut elimination for
G!LI, globally in ID; and locally in PA so that

1CON(PA) «

CE(G'LI,)

IS proved In a suitably weak metatheory (eg., PRA).

v
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()-rule: the motivation

Cut elimination for 2nd order logics is tricky, since the
reduction step

=y oY)  ¢hzy) =1
M'EVX.p(X) VX.p(X)=1I

I'= 11 (CUT)
e
['= gp(sz?)jgiI(Axw) = 11 (CUT)

may yield a BIGGER cut formula. Q2-rule (Buchholz 81,
Buchholz-Schitte 88, Buchholz 01, Aehlig 04,
Akiyoshi-Mints 16, ...) is a way to resolve this difficulty.



()-rule: the idea

The (simplified) Q-rule for G'LI,:

{ A — H* }A:>§I}ISO*(Y)
VX.o(X) =TI

where x is any substitution for 1st order free variables
and A =3 ¢*(Y) means

e Y ZFV(A),

e A C Fm (1storder formulas),

e LIFA= oY)

“If A =4 o*(Y) implies A = IT* for any * and A C Fm,
then VX.po(X) = 11



()-rule: the idea

Embedding: We have:

{ A= p*(\z.9) }A:>¥90*(Y)
VX.p(X) = o(Az.9)

Hence VX -left can be simulated by (.

Collapsing: Consider

=y oY) {A=II" sy
[' = VX.o(X) VX.p(X) =11
I'= 11

(CUT)

If ' =3 »(Y) holds, then T = II is one of the premises
(with * = id). Hence the (CUT) can be eliminated.



-rule: how it works

Syntactic cut elimination for G'LI,:

1. Introduce a new proof system based on the (2-rule
by inductive definition.

2. Show that G'LI, embeds into the new proof
system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.

(Can be extended to all derivations (Akiyoshi-Mints 16))
Theorem

ID, proves that G'LI, is a conservative extension of LI.J



-rule: how it works

Syntactic cut elimination for G'LI,:

1. Introduce a new proof system based on the (2-rule
by inductive definition.

2. Show that G'LI, embeds into the new proof
system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.
(Can be extended to all derivations (Akiyoshi-Mints 16))
Theorem J

ID; proves that G'LI, is a conservative extension of LI.

So the Q-rule works, but is it logically sound?



()-valuation
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Warm-up: conservative extension by MacNeille completion

Let us first give an algebraic proof to
Fact

G'LI, is a conservative extension of LI.
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Warm-up: conservative extension by MacNeille completion

Let us first give an algebraic proof to
Fact

G1L10 iS a conservative extension of LI.

(Proof)

Let L := Fm/~ be the Lindenbaum algebra for LI.
Let L be the MacNeille completion of L.

The canonical valuation f : Fm — L

f(p) == [p]

can be extended to f : FMy, — L since L is complete.
If GILI, I ¢ with ¢ € Fm, then f(¢) = T by Soundness.
Since f = f for Fm, we have f(¢) = [¢] = T.

Thatis, LI F .



MacNeille completion and ()-rule

Difficulty: the definition of f involves

F(VX.p) = /\ LRI

that cannot be formalized in PA..



MacNeille completion and ()-rule

Difficulty: the definition of f involves

F(VX.0) = /\ LRI

that cannot be formalized in PA..
Key observation

The Q-rule is sound w.r.t. f: FMy — L, though unsound
In general.

v

The reason is that €2-rule Is “similar” to MacNellle.

{A=1I" basuey)  {a<ylg<g
VX.o(X) =11 TSy




Conservative extension by (2-valuation

Motivated by this, we introduce the (2-valuation
fQ FMO — L

() = |p(?)]
et e X) = [t € X]
fHp) = fH))

Atetm £ (0(1))
FAVX.oX)) = V{A]leL:A=yY)for some Y}

s
= 0
<]: ~
%%ﬁ
5 4
S
[l

Lemma
G'LI, is sound w.r.t. the Q-valuation.




Conservative extension by (2-valuation

Motivated by this, we introduce the (2-valuation
fQ FMO — L

o (p(2)) = [p(?)]

Yt e X) = [te X]

ffllo=v) = o) — W)

fPVzo(@) = Nerm fH0(1))

FAVX.oX)) = V{A]leL:A=yY)for some Y}

Lemma
G'LI, is sound w.r.t. the Q-valuation.

Remark: (Altenkirch-Coquand 01) made a similar
observation in the context of \-calculus, but ...



Local formalization of conservative extension

The argument locally formalizes in PA. Hence:

Theorem (in PRA)

PA is 1-consistent iff G'LI, is a conservative extension
of LI.

ID,, is 1-consistent iff G'LI, is a conservative extension
of LI.

o



Polarity: a uniform framework for MacNeille completion and cut

elimination

A polarity is W = (W, W' R) where W, W' are sets and
R C W x W' (Birkhoff 40).
Given X C W and Z C W/,

XP = {zeW' :forallz € X, x R 2z}
7 {reW:forallze Z xRz}

The pair (&>, <) forms a Galois connection:
XCZ7 < X°DZ
so induces a closure operator on o(W):

(X)) = X
G(W) {XCW: X =~(X)}
XU, Y = y(XUY)



Polarity yields MacNeille completion

Lemma

W+ .= (G(W),Nn,U,) is a complete lattice.

It is a complete Heyting algebra under additional as-
sumptions.

v

Given a lattice (or Heyting algebra) A,
W = (A A <)

IS a polarity. X* iIs the upper bounds of X and Z< is the
lower bounds of Z. Let v(a) := {a}"~.

Theorem

v: A — Wy is the MacNeille completion of A. J



MacNeille completion and Dedekind cuts

For example, consider

Wg = (Q,Q, <)

Then for each X € G(W), (X, X") is a Dedekind cut.
Hence

W¢§ = RU {#o0}.




Polarity for algebraic cut elimination

We now give an algebraic proof to
Theorem J

G1L10 admits cut elimination.

Define a polarity by

W, = (Seq, Cat,=¢/)

Seq = FM

Cuxt = FMg x (FMy U {0})

=< (X,1I) & I,% = Ilis cut-free provable in G'LI,.

Fact
W, is a complete Heyting algebra such that

Feyp? «— TI'=9o0.




(2-valuation again

One could use the “reducibility candidates” technique as
in (Maehara 91) and (Okada 96), but it is too strong for
G!LI,. It doesn’t (locally) formalize in PA.

(-valuation f : FMy — W,

e (p(2)) = p(?)"

Yt e X) = (te X)*
fflo—=v) = o) = )
fPVz.e@) = Nerm [ (0(1))
FUYX (X)) = VX.o(X)T

— {A € Seq: A=Y oY) for some Y}



Algebraic cut elimination

Lemma
G!LI, - I' = Il implies f*(I') C f*(II) (Soundness).
v € ) C ¢ for any ¢ € FM, (Completeness).

Now cut elimination for G'LI, follows easily.

(Proof) Suppose G'LIj - ¢ = 1.

Then () C f*(¢) by Soundness.

o € fp) C ) C ¥~ by Completeness.
So ¢ = 1) Is cut-free provable.



Algebraic cut elimination

We have shown provability = cut-free provabillity.

So a fortiori we obtain:
Theorem

ij Is the MacNeille completion of the Lindenbaum al-
gebra for G'LI,.

y

algebraic c.elim = MacNeille compl. + Q2-valuation



Algebraic cut elimination

We have shown provability = cut-free provabillity.

So a fortiori we obtain:
Theorem

ij Is the MacNeille completion of the Lindenbaum al-
gebra for G'LI,.

algebraic c.elim = MacNeille compl. + Q2-valuation

Theorem (in PRA)

1CON(PA) ¢ CE(G!LI))
1CON(ID,) < CE(G!LI,)




For the lambda calculus audience
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Why does metatheory matter?

We have been careful in which metatheory the theorem
IS proved.

Does it matter if one is only interested in the TRUTH?

Yes! Since a proper metatheory consideration often
leads to an interesting TRUTH such as

iterated System T = parameter-free System F.



Parameter-free System F

Type, IS defined by:

AB = X|A= B|VX.C,
where C'is a simple type s.t. Fv(C') C {X }.
F{ := System F with types restricted to Type,.
Eg. N =VX.(X=X)=(X=X) € Type,.
Clearly Rep(T) C Rep(FYp).

How do you prove the converse?



Parameter-free Systewm F and System T

Theorem (Akiyoshi-T. 16)

ID, F SN(F?).
PA  ®-SN(FYy) for any finite & C Type,.

The 2nd statement implies: for every closed term
M : N = N of F{,

PA FVz3dy. “Mz =5y,

hence Rep(F;) C Total(PA) = Rep(T).
Theorem (Altenkirch-Coquand 01)
Rep(F) = Rep(T). J

iterated System T = parameter-free System F.



For the nonclassical logics audience



Beyond classical and intuitionistic: substructural logics

Recall:
Theorem (Harding-Bezhanishvili 04)

HA and B.A are the only nontrivial subvarieties of H.A

closed under MacNeille completions.

On the other hand, one finds abundant of examples in
substructural logics and associated residuated lattices.

Theorem (Ciabattoni-Galatos-T. 12)

e There are infinitely many varieties of residuated lat-
tices closed under MacNeille completions.

e S0 there are infinitely many substructural logics that
admit algebraic cut elimination.

o

o



Beyond classical and intuitionistic: intermediate logics

~or intermediate logics, a useful framework is
nypersequent calculus. Associated completion is
nyper-MacNeille completion.

Theorem (Ciabattoni-Galatos-T. 08, 17)

There are infinitely many subvarieties of H.A closed
under hyper-MacNeille completions.

So there are infinitely many intermediate logics that
admit algebraic cut elimination in hypersequent cal-
culi.

o



Limitation of completion and cut elimination

On the other hand, there are also counterexamples for
cut elimination/completion in substructural logics. That
is WHY substructural logics are interesting!

Theorem

e Thereisan MV algebra (Chang’s chain) which cannot
be embedded into a complete MV algebra.

e Thatis, MYV is not closed under any completion

e Hence tukasiewicz infinite-valued logic cannot be
conservatively extended with infinitary .

e That is, £ has NO “good” proof system (although
some exist ... ).

v



Conclusion

e ()-rule is valid for the MacNeille completion of the
Lindenbaum algebra.

e This leads to algebraic cut elimination for G'LI,
based on MacNeille completion + (2-valuation.

Target Fragments Full higher-order logics
Algebraic | MacNellle MacNeille

+ (-valuation | + reducibility candidates
Syntactic | Q-rule Takeuti’'s Conjecture

cut-elimination for G'LI,,
parameter-free System F.

1-consistency of ID,,
iterated System T
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