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Introduction:

犬の口にはゴムパッキンがついている
（佐々木倫子『動物のお医者さん』より）



A similarity

Buchholz’ Ω-rule (1981)

{ ∆ ⇒ Π∗ }∆ ⇒LI

Y ϕ∗(Y )

∀X.ϕ(X) ⇒ Π

where ∆ is 1st order and ∀X.ϕ(X), Π is 2nd order,

is similar to

a characteristic property of MacNeille completion

A ⊆ A:
{a ≤ y}a ≤ x

x ≤ y

where a ∈ A and x, y ∈ A.



Cut elimination proofs for higher order logics/arithmetic

Syntactic cut elimination

1. Ordinal assignment

2. Ω-rule technique (Buchholz, Aehlig, Mints, Akiyoshi,

. . . ). Works only for fragments of higher order

logics/arithmetic.

Semantic cut elimination

1. Semi-valuation (Schütte, Takahashi, Prawitz).

3-valued semantics (Girard 76).

Employs RAA and WKL.

Destroys the proof structure.

2. MacNeille completion and reducibility candidates

(Maehara 91, Okada 96, after Girard 71). Fully

constructive. Extends to strong normalization.



Cut elimination proofs for higher order logics/arithmetic

Target system Fragments Full higher-order logics

Algebraic proof ??? MacNeille completion

+ reducibility candidates

Syntactic proof Ω-rule Takeuti’s Conjecture

In this talk we fill in the ??? slot by introducing the

concept of Ω-valuation. The target systems are

parameter-free 2nd order intuitionistic logics.



Cut elimination proofs for higher order logics/arithmetic

Target system Fragments Full higher-order logics

Algebraic proof ??? MacNeille completion

+ reducibility candidates

Syntactic proof Ω-rule Takeuti’s Conjecture

In this talk we fill in the ??? slot by introducing the

concept of Ω-valuation. The target systems are

parameter-free 2nd order intuitionistic logics.

Notice: It is mostly a reworking of known results

(especially those of Klaus Aehlig). Our purpose is just to

provide an algebraic perspective on them.



Outline

• MacNeille completion

• Parameter-free 2nd order intuitionistic logics

• Ω-rule technique (syntactic)

• Ω-valuation technique (semantic)

• For the lambda calculus audience

• For the nonclassical logics audience



MacNeille completion

石器時代より前のおはなし



MacNeille completion

A: a lattice.

A completion of A is an embedding e : A −→ B into a

complete lattice B (we often assume A ⊆ B).
Examples:

• Q ⊆ R ∪ {±∞}
• e : A −→ ℘(uf(A)) (A: Boolean algebra)

A ⊆ B is a MacNeille completion if for any x ∈ B,

x =
∧

{a ∈ A : x ≤ a} =
∨

{a ∈ A : a ≤ x}.

Theorem (Banachewski 56, Schmidt 56)

Every lattice A has a unique MacNeille completion A.

MacNeille completion is regular, i.e., preserves
∧

and
∨

that already exist in A.



MacNeille completion

• Q ⊆ R ∪ {±∞} is MacNeille, since

x = inf{a ∈ Q : x ≤ a} = sup{a ∈ Q : a ≤ x}

for any x ∈ R. It is regular, e.g.,

0 = lim
n→∞

1

n
(in Q) = lim

n→∞

1

n
(in R).

• e : A −→ ℘(uf(A)) is not regular, hence not

MacNeille (actually a canonical extension).

• f : B −→ UpSet(PPF(B)) is not regular (B: Heyting

algebra)



MacNeille completion: its limitation

DL: the class of distributive lattices.

HA: the class of Heyting algebras.

BA: the class of Boolean algebras.

Theorem

• DL is not closed under MacNeille (Funayama 44).

• HA and BA are closed under MacNeille completions.

• These are the only nontrivial subvarieties of HA
closed under MacNeille (Harding-Bezhanishvili 04).

Conservative extension by MacNeille completion does

not work for proper intermediate logics.



MacNeille completion: link to Ω-rule

Fact

A completion A ⊆ B is MacNeille iff the inferences below

are valid:

{a ≤ y}a ≤ x
x ≤ y

{x ≤ a}y ≤ a

x ≤ y

where x, y range over B and a over A.

“If a ≤ x implies a ≤ y for any a ∈ A, then x ≤ y.”

This looks similar to the Ω-rule.



Parameter-free 2nd order intuitionistic

logic

近年、若者の×××離れが著しい



Starter: full 2nd order logic

G
1
LI: sequent calculus for 2nd order intuitionistic logic

with full comprehension

ϕ(λx.ψ),Γ ⇒ Π

∀X.ϕ(X),Γ ⇒ Π

Γ ⇒Y ϕ(Y )

Γ ⊢ ∀X.ϕ(X)

where

• Γ ⇒Y ϕ(Y ) means Y 6∈ FV (Γ) (eigenvariable).

• ϕ(λx.ψ) obtained by replacing t ∈ X 7→ ψ(t).



Takeuti’s logicism

Theorem (cf. Takeuti 53)

For any Σ0
1 sentence ϕ,

Z2 ⊢ ϕ =⇒ G
1
LI ⊢ ξ → ϕ

for some true Π0
1 sentence ξ.

Cut elimination for G1
LI implies 1-consistency of Z2, i.e.,

provable Σ0
1-sentences are true.

Proof: By relativization ϕ 7→ ϕN.

N(t) := ∀X.[∀x(x ∈ X → x+ 1 ∈ X) ∧ 0 ∈ X → t ∈ X ]
(∀x.ϕ)N := ∀x.N(x) → ϕN

(∃x.ϕ)N := ∃x.N(x) ∧ ϕN



線形論理の「基礎論離れ」の系譜

• 1953年：竹内、高階算術の無矛盾性を高階述語論理の
カット除去に還元

• 1965年：Prawitz、一般証明論の提唱
• 1971年：Girard、高階命題論理の強正規化定理
• 1986年：Girard、線形論理と証明ネットの提唱



線形論理の「基礎論離れ」の系譜

証明ネットの理論が完全にうまくいくのは乗法的部分
のみ：

α α⊥ A⊗B A℘B

乗法的部分に制限するなら論理式なんていらない。大事な
のは証明ネットのグラフ構造のみ。

q

....

....

....

p p p123



Parameter-free fragments of 2nd order intuitionistic logic

Tm: the set of 1st order terms

X, Y, Z, . . . : 2nd order variables

Fm : the formulas of 1st-order intuitionistic logic

ϕ, ψ ::= p(t) | t ∈ X | ⊥ | ϕ∧ψ | ϕ∨ψ | ϕ→ ψ | ∀x.ϕ | ∃x.ϕ

FM0:

ϕ ::= p(t) | t ∈ X | · · · | ∀X.ψ | ∃X.ψ

where ψ ∈ Fm doesn’t contain 2nd order variables

except X.

FM1, FM2, FM3, . . .

If ϕ arithmetical, ϕN ∈ FM0.



Parameter-free logics and inductive definitions

LI: sequent calculus for the 1st order intuitionistic logic.

G
1
LI0: sequent calculus G

1
LI restricted to FM0.

G
1
LI1,G

1
LI2,G

1
LI3, . . .

Theorem

If PA ⊢ ϕ (∈ Σ0
1), then G

1
LI0 ⊢ ξ → ϕ.

Cut elimination for G1
LI0 implies 1-consistency of PA.

Cut elimination for G1
LIn implies 1-consistency of IDn.



Parameter-free logics and inductive definitions

LI: sequent calculus for the 1st order intuitionistic logic.

G
1
LI0: sequent calculus G

1
LI restricted to FM0.

G
1
LI1,G

1
LI2,G

1
LI3, . . .

Theorem

If PA ⊢ ϕ (∈ Σ0
1), then G

1
LI0 ⊢ ξ → ϕ.

Cut elimination for G1
LI0 implies 1-consistency of PA.

Cut elimination for G1
LIn implies 1-consistency of IDn.

We are now interested in proving cut elimination for

G
1
LI0 globally in ID1 and locally in PA so that

1CON(PA) ↔ CE(G1
LI0)

is proved in a suitably weak metatheory (eg., PRA).



Ω-rule

私はアルファでありオメガである



Ω-rule: the motivation

Cut elimination for 2nd order logics is tricky, since the

reduction step

Γ ⇒Y ϕ(Y )

Γ ⊢ ∀X.ϕ(X)

ϕ(λx.ψ) ⇒ Π

∀X.ϕ(X) ⇒ Π
Γ ⇒ Π

(CUT )

⇓

Γ ⇒ ϕ(λx.ψ) ϕ(λx.ψ) ⇒ Π
Γ ⇒ Π

(CUT )

may yield a BIGGER cut formula. Ω-rule (Buchholz 81,

Buchholz-Schütte 88, Buchholz 01, Aehlig 04,

Akiyoshi-Mints 16, . . . ) is a way to resolve this difficulty.



Ω-rule: the idea

The (simplified) Ω-rule for G1
LI0:

{ ∆ ⇒ Π∗ }∆⇒LI

Y
ϕ∗(Y )

∀X.ϕ(X) ⇒ Π

where ∗ is any substitution for 1st order free variables

and ∆ ⇒LI

Y ϕ∗(Y ) means

• Y 6∈ FV(∆),
• ∆ ⊆ Fm (1st order formulas),

• LI ⊢ ∆ ⇒ ϕ∗(Y ).

“If ∆ ⇒LI

Y ϕ∗(Y ) implies ∆ ⇒ Π∗ for any ∗ and ∆ ⊆ Fm,

then ∀X.ϕ(X) ⇒ Π.”



Ω-rule: the idea

Embedding: We have:

{ ∆ ⇒ ϕ∗(λx.ψ) }∆⇒LI

Y
ϕ∗(Y )

∀X.ϕ(X) ⇒ ϕ(λx.ψ)

Hence ∀X-left can be simulated by Ω.

Collapsing: Consider

Γ ⇒Y ϕ(Y )

Γ ⇒ ∀X.ϕ(X)

{ ∆ ⇒ Π∗ }∆⇒LI

Y
ϕ∗(Y )

∀X.ϕ(X) ⇒ Π
Γ ⇒ Π

(CUT )

If Γ ⇒LI

Y ϕ(Y ) holds, then Γ ⇒ Π is one of the premises

(with ∗ = id). Hence the (CUT) can be eliminated.



Ω-rule: how it works

Syntactic cut elimination for G1
LI0:

1. Introduce a new proof system based on the Ω-rule

by inductive definition.

2. Show that G1
LI0 embeds into the new proof

system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.

(Can be extended to all derivations (Akiyoshi-Mints 16))

Theorem

ID1 proves that G1
LI0 is a conservative extension of LI.



Ω-rule: how it works

Syntactic cut elimination for G1
LI0:

1. Introduce a new proof system based on the Ω-rule

by inductive definition.

2. Show that G1
LI0 embeds into the new proof

system.

3. Apply a syntactic cut elimination procedure.

It works for derivations of 1st order sequents.

(Can be extended to all derivations (Akiyoshi-Mints 16))

Theorem

ID1 proves that G1
LI0 is a conservative extension of LI.

So the Ω-rule works, but is it logically sound?



Ω-valuation

スライムをゆうしゃのつるぎで倒すのは
大人げないと思う。



Warm-up: conservative extension by MacNeille completion

Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.
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Warm-up: conservative extension by MacNeille completion

Let us first give an algebraic proof to

Fact

G
1
LI0 is a conservative extension of LI.

(Proof)

Let L := Fm/∼ be the Lindenbaum algebra for LI.

Let L be the MacNeille completion of L.

The canonical valuation f : Fm −→ L

f(ϕ) := [ϕ]

can be extended to f : FM0 −→ L since L is complete.

If G1
LI0 ⊢ ϕ with ϕ ∈ Fm, then f(ϕ) = ⊤ by Soundness.

Since f = f for Fm, we have f(ϕ) = [ϕ] = ⊤.

That is, LI ⊢ ϕ.



MacNeille completion and Ω-rule

Difficulty: the definition of f involves

f(∀X.ϕ) =
∧

ξ:Tm→L

f [X 7→ξ](ϕ)

that cannot be formalized in PA.



MacNeille completion and Ω-rule

Difficulty: the definition of f involves

f(∀X.ϕ) =
∧

ξ:Tm→L

f [X 7→ξ](ϕ)

that cannot be formalized in PA.
Key observation

The Ω-rule is sound w.r.t. f : FM0 −→ L, though unsound

in general.

The reason is that Ω-rule is “similar” to MacNeille.

{ ∆ ⇒ Π∗ }∆⇒LI

Y
ϕ∗(Y )

∀X.ϕ(X) ⇒ Π

{a ≤ y}a ≤ x
x ≤ y



Conservative extension by Ω-valuation

Motivated by this, we introduce the Ω-valuation

fΩ : FM0 −→ L.

fΩ(p(t)) = [p(t)]
fΩ(t ∈ X) = [t ∈ X]
fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

∧
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) =

∨
{[∆] ∈ L : ∆ ⇒LI

Y ϕ(Y ) for some Y }

Lemma

G
1
LI0 is sound w.r.t. the Ω-valuation.



Conservative extension by Ω-valuation

Motivated by this, we introduce the Ω-valuation

fΩ : FM0 −→ L.

fΩ(p(t)) = [p(t)]
fΩ(t ∈ X) = [t ∈ X]
fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

∧
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) =

∨
{[∆] ∈ L : ∆ ⇒LI

Y ϕ(Y ) for some Y }

Lemma

G
1
LI0 is sound w.r.t. the Ω-valuation.

Remark: (Altenkirch-Coquand 01) made a similar

observation in the context of λ-calculus, but . . .



Local formalization of conservative extension

The argument locally formalizes in PA. Hence:

Theorem (in PRA)

PA is 1-consistent iff G1
LI0 is a conservative extension

of LI.

IDn is 1-consistent iff G1
LIn is a conservative extension

of LI.



Polarity: a uniform framework for MacNeille completion and cut

elimination

A polarity is W = 〈W,W ′, R〉 where W,W ′ are sets and

R ⊆W ×W ′ (Birkhoff 40).

Given X ⊆W and Z ⊆W ′,

X⊲ := {z ∈ W ′ : for all x ∈ X, x R z}
Z⊳ := {x ∈W : for all z ∈ Z, x R z}

The pair (⊲,⊳) forms a Galois connection:

X ⊆ Z⊳ ⇐⇒ X⊲ ⊇ Z

so induces a closure operator on ℘(W ):

γ(X) := X⊲⊳

G(W) := {X ⊆W : X = γ(X)}
X ∪γ Y := γ(X ∪ Y )



Polarity yields MacNeille completion

Lemma

W
+ := 〈G(W),∩,∪γ〉 is a complete lattice.

It is a complete Heyting algebra under additional as-

sumptions.

Given a lattice (or Heyting algebra) A,

WA := 〈A,A,≤〉

is a polarity. X⊲ is the upper bounds of X and Z⊳ is the

lower bounds of Z. Let γ(a) := {a}⊲⊳.

Theorem

γ : A −→ W
+
A

is the MacNeille completion of A.



MacNeille completion and Dedekind cuts

For example, consider

WQ := 〈Q,Q,≤〉

Then for each X ∈ G(W), (X,X⊲) is a Dedekind cut.

Hence

W
+
Q

∼= R ∪ {±∞}.



Polarity for algebraic cut elimination

We now give an algebraic proof to

Theorem

G
1
LI0 admits cut elimination.

Define a polarity by

Wcf := 〈Seq, Cxt,⇒cf〉
Seq := FM∗

0

Cxt := FM∗
0 × (FM0 ∪ {∅})

Γ ⇒cf (Σ,Π) ⇔ Γ,Σ ⇒ Π is cut-free provable in G
1
LI0.

Fact

W
+
cf is a complete Heyting algebra such that

Γ ∈ ϕ⊳ ⇐⇒ Γ ⇒cf ϕ.



Ω-valuation again

One could use the “reducibility candidates” technique as

in (Maehara 91) and (Okada 96), but it is too strong for

G
1
LI0. It doesn’t (locally) formalize in PA.

Ω-valuation f : FM0 −→ W
+
cf

fΩ(p(t)) = p(t)⊳

fΩ(t ∈ X) = (t ∈ X)⊳

fΩ(ϕ→ ψ) = fΩ(ϕ) → fΩ(ψ)
fΩ(∀x.ϕ(x)) =

⋂
t∈Tm f

Ω(ϕ(t))
fΩ(∀X.ϕ(X)) = ∀X.ϕ(X)⊳

= {∆ ∈ Seq : ∆ ⇒cf
Y ϕ(Y ) for some Y }⊲⊳



Algebraic cut elimination

Lemma

G
1
LI0 ⊢ Γ ⇒ Π implies fΩ(Γ) ⊆ fΩ(Π) (Soundness).

ϕ ∈ fΩ(ϕ) ⊆ ϕ⊳ for any ϕ ∈ FM0 (Completeness).

Now cut elimination for G1
LI0 follows easily.

(Proof) Suppose G
1
LI0 ⊢ ϕ⇒ ψ.

Then fΩ(ϕ) ⊆ fΩ(ψ) by Soundness.

ϕ ∈ fΩ(ϕ) ⊆ fΩ(ψ) ⊆ ψ⊳ by Completeness.

So ϕ⇒ ψ is cut-free provable.



Algebraic cut elimination

We have shown provability = cut-free provability.

So a fortiori we obtain:
Theorem

W
+
cf is the MacNeille completion of the Lindenbaum al-

gebra for G1
LI0.

algebraic c.elim = MacNeille compl. + Ω-valuation



Algebraic cut elimination

We have shown provability = cut-free provability.

So a fortiori we obtain:
Theorem

W
+
cf is the MacNeille completion of the Lindenbaum al-

gebra for G1
LI0.

algebraic c.elim = MacNeille compl. + Ω-valuation

Theorem (in PRA)

1CON(PA) ↔ CE(G1
LI0)

1CON(IDn) ↔ CE(G1
LIn)



For the lambda calculus audience

今北産業



Why does metatheory matter?

We have been careful in which metatheory the theorem

is proved.

Does it matter if one is only interested in the TRUTH?

Yes! Since a proper metatheory consideration often

leads to an interesting TRUTH such as

iterated System T = parameter-free System F.



Parameter-free System F

Type0 is defined by:

A,B ::= X | A⇒ B | ∀X.C,

where C is a simple type s.t. Fv(C) ⊆ {X}.

F
p
0 := System F with types restricted to Type0.

Eg. N := ∀X.(X ⇒ X) ⇒ (X ⇒ X) ∈ Type0.

Clearly Rep(T) ⊆ Rep(Fp
0).

How do you prove the converse?



Parameter-free Systewm F and System T

Theorem (Akiyoshi-T. 16)

ID1 ⊢ SN(Fp
0).

PA ⊢ Φ-SN(Fp
0) for any finite Φ ⊆ Type0.

The 2nd statement implies: for every closed term

M : N ⇒ N of F
p
0,

PA ⊢ ∀x∃y. “Mx =β y
′′,

hence Rep(Fp
0) ⊆ Total(PA) = Rep(T).

Theorem (Altenkirch-Coquand 01)

Rep(Fp
0) = Rep(T).

iterated System T = parameter-free System F.



For the nonclassical logics audience



Beyond classical and intuitionistic: substructural logics

Recall:
Theorem (Harding-Bezhanishvili 04)

HA and BA are the only nontrivial subvarieties of HA
closed under MacNeille completions.

On the other hand, one finds abundant of examples in

substructural logics and associated residuated lattices.

Theorem (Ciabattoni-Galatos-T. 12)

• There are infinitely many varieties of residuated lat-

tices closed under MacNeille completions.

• So there are infinitely many substructural logics that

admit algebraic cut elimination.



Beyond classical and intuitionistic: intermediate logics

For intermediate logics, a useful framework is

hypersequent calculus. Associated completion is

hyper-MacNeille completion.

Theorem (Ciabattoni-Galatos-T. 08, 17)

• There are infinitely many subvarieties of HA closed

under hyper-MacNeille completions.

• So there are infinitely many intermediate logics that

admit algebraic cut elimination in hypersequent cal-

culi.



Limitation of completion and cut elimination

On the other hand, there are also counterexamples for

cut elimination/completion in substructural logics. That

is WHY substructural logics are interesting!

Theorem

• There is an MV algebra (Chang’s chain) which cannot

be embedded into a complete MV algebra.

• That is, MV is not closed under any completion

• Hence Łukasiewicz infinite-valued logic cannot be

conservatively extended with infinitary
∧

.

• That is, Ł has NO “good” proof system (although

some exist . . . ).



Conclusion

• Ω-rule is valid for the MacNeille completion of the

Lindenbaum algebra.

• This leads to algebraic cut elimination for G1
LI0

based on MacNeille completion + Ω-valuation.

Target Fragments Full higher-order logics

Algebraic MacNeille MacNeille

+ Ω-valuation + reducibility candidates

Syntactic Ω-rule Takeuti’s Conjecture

1-consistency of IDn = cut-elimination for G1
LIn

iterated System T = parameter-free System F.



Final Word

人生面白いほうに三千点。さらに倍。
（羽海野チカ『ハチミツとクローバー』

より）
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